Name\_\_\_\_

## Phys 2110, Section 5 Quiz #2 — Fall 2001

- A projectile is fired from ground level toward a vertical wall. It is launched at an angle of 55.0° above the horizontal at a horizontal distance of 240 m from the wall. The projectile strikes the wall 6.70 s after being fired.
- a) Find the x-component of the projectile's initial velocity.

b) Find the magnitude of the projectile's initial velocity, i.e. the initial speed. (Hint: Use the given direction of the initial velocity.)

Since 
$$V_{0x} = V_{0}(0.55^{\circ})$$
, then
$$V_{0} = \frac{V_{0x}}{\cos 55^{\circ}} = \frac{35.8 \%}{\cos 55^{\circ}} = 62.5 \%$$

c) Find the y-component of the initial velocity.

$$V_{\rm sy} = V_{\rm s} \sin 55^{\circ} = (62.5\%) \sin 55^{\circ} = 51.2\%$$

d) Find the height at which the projectile strikes the wall.

At 
$$t = 6.70 \, \text{s}$$
, what is the value of  $y$ ? With  $ay = -9.80 \, \% \, \text{s}$ ,  $y = v_{y}t + \frac{1}{2}a_{y}t^{4} = (51.2 \, \%)(6.70 \, \text{s}) + \frac{1}{2}(-9.80 \, \%)(6.70 \, \text{s})^{2} = 123 \, \text{m}$ 

e) When the projectile hit the wall, was it increasing or decreasing in height?

$$V_y = V_{0y} + a_y t = (51.2\%) + (-9.8\%)(6.70 s)$$
  
= -14.5%

The projectile was decreasing in height (Vy is negative).





2. A 4.0 kg mass is supported by two cables, as shown in this picture. One of the cables makes an angle of 32.0° with the vertical and the other is horizontal.

a) Draw a Free-Body Diagram (DDP!) for the mass showing all the forces acting on it.





b) Find the tensions in the two cables.

Mass is not accelerating at all (ax=0, ay=0) so N's 2" Law of motion gives:

$$x: \Sigma F_x = -T_1 \sin 32^\circ + T_2 = 0$$
 (1)

$$y: Z F_y = T_1 \cos 32^\circ - 39.2 N = 0$$
 (2)

From (2),

$$T_1 = \frac{39.2 \text{ N}}{\omega 5 32^{\circ}} = 46.2 \text{ N}$$

From (1),

$$T_2 = T_1 \sin 32^\circ = (46.2 \,\text{N}) \sin 32^\circ = 24.5 \,\text{N}$$

You must show all your work and include the right units with your answers!

$$A_x = A\cos\theta$$
  $A_y = A\sin\theta$   $A = \sqrt{A_x^2 + A_y^2}$   $\tan\theta = \left(\frac{A_y}{A_x}\right)$   $g = 9.8 \frac{m}{s^2}$ 

For free-fall problems ignore air resistance.

$$v = v_0 + at$$
  $x = x_0 + v_0 t + \frac{1}{2} a t^2$   $v^2 = v_0^2 + 2a(x - x_0)$   $x = x_0 + \frac{1}{2} (v_0 + v) t$  
$$a_c = \frac{v^2}{r}$$
  $\mathbf{F}_{\text{net}} = m\mathbf{a}$   $W = mg$