PHYSICS 2110 Final Exam

December 11, 2001

Name (please print) Student ID Number		Seat Number Class meeting time:	
REMEMBER: YOU MUST S RECEIVE CREDIT! Write d problem. Draw pictures—they are using and, again, show you watch the significant figures!	own given quantities and will help you visualize the	identify the qua system. Write a	intities requested in the lown the formula(s) you
$g = 9.80 \text{ m/s}^2$ c_{water} $I_0 = 10^{-12} \text{ W/m}$	R = 1.00 cal/g-K = 4190 J/kg-J R = 8.314 J/mol-K $R = 1.01 \times 10^5 \text{ N/m}^2 = 1.01 $	= 0.0821 L-atn	n/s (speed of sound) n/mol-K
UESTION NUMBER	POSSIBLE SCORE	<u> </u>	YOUR SCORE
1	15		<u></u>
2	15		<u> </u>
3	10		
4	13		
5	12		·
6	. 8		
7	7		
8	10		
9	10		· · · · · · · · · · · · · · · · · · ·
		TOTAL	

In the figure above, a 1.0 kg box of tuna fish cans on a frictionless inclined surface is connected to a 2.0 kg box of baked beans. The pulley is massless and frictionless. An upward force F of 6.0 N acts on the baked beans case, which has a downward acceleration of 5.5 m/s².

2.0 kg box

containing cans

of baked beans

a) What is the tension in the connecting cord? (10 points)

· Solve for T:

$$T = M_9 - M_0 - F$$

= $(2.0 \text{ h})(9.80\%) - (2.0 \text{ h})(5.5\%) - 6.0 \text{ N}$
= 2.6 N

b) What is the angle β ? (5 points)

Draw the Free-Bily Diagram for the mass on the slope. (Note: No friction; descompose force of gravity mg as usual.) Adding up the forces acting down the slope, Neutrin's 2nd Law gives

$$\sin \beta = \frac{ma - T}{mg} = \frac{(1.0 \text{ b})(5.5 \%) - 2.6 \text{ N}}{(1.0 \text{ b})(9.80 \%)} = 0.296$$

A pinball machine launches a 100. g ball with a spring driven plunger. The game board is inclined at 8.5° above the horizontal. Find the spring constant k of the spring that will give the ball a speed of 83 cm/s, when the plunger is released from rest with the spring compressed 5.0 cm from its relaxed position. Assume that the plunger's mass and frictional effects are negligible. The dashed lines in the figure above shows the position of the ball when it has the maximum speed just as it loses contact with the plunger. (15 points)

Measing height from the initial position, the initial mech energy is just the energy stored in the spring. With x = 5.0 cm = 0.050 m,

In the final position the ball has kinetic energy $\frac{1}{2}mv^2$ and also grav. pot'll energy mgh where $h = x \sin 8.5^{\circ}$. Thus:

Er = { mv2 + mg x sin 8.5°

with no friction forces, energy is conserved: $E_i = E_f$. Solve for k: $\frac{1}{2}kx^2 = \frac{1}{2}mv^2 + mgx \sin 8.5^\circ$

 $k = \frac{mv^{1} + 2mg \times \sin 8.5^{\circ}}{x^{2}} = \frac{(0.100 \text{ kg})(0.83 \frac{3}{3})^{2} + 2 (0.100 \text{ kg})(9.80 \frac{3}{3})(0.050 \text{ mg}) \sin 8.5^{\circ}}{(0.050 \text{ mg})^{2}}$

- 3. The turntable of a record player rotates initially at a rate of 33.0 revolutions /min and takes 20.5 s to come to rest.
 - a) What is the angular acceleration (in rad/s²) of the turntable, assuming the acceleration is uniform? (3 points)

$$\omega_0 = 33.0 \frac{\text{rev}}{\text{min}} \cdot \frac{2\pi t \text{ rad}}{\text{rev}} \cdot \frac{1 \text{ min}}{60 \text{ s}} = 3.46 \frac{\text{rad}}{\text{s}}$$

$$\alpha = \frac{\omega - \omega_{0}}{t} = \frac{0 - 34.6 \frac{v_{0}t}{s}}{20.5 \cdot 10^{-10}} = \frac{0.169 \frac{v_{0}t}{s^{2}}}{20.5 \cdot 10^{-10}}$$

b) How many rotations does the turntable make before coming to rest? (3 points)

$$\Theta = \frac{1}{2}(\omega_{*} + \omega) t = \frac{1}{2}(34.6 + 0)(20.5)$$

$$= 35.4 \text{ red} \left(\frac{1 \text{ NeW}}{2 \times \text{ red}}\right) = 5.64 \text{ rev}$$

c) If the radius of the turntable is 14 cm, what is the initial linear speed of a point on the rim of the turntable? (1 point)

Initial value of v: (do r= 0.14 m)

d) What are the magnitudes of the radial and tangential components of the linear acceleration of the point on the rim at t=0? (3 points) A + + = 0, $\omega = 3.46$

$$\alpha_{1} = \frac{1}{4} = \omega^{2} Y = (3.46 \frac{1}{3})(0.14 m) = \frac{1.67 \frac{1}{3}}{0.024 \frac{1}{3}}$$
 $\alpha_{1} = \alpha_{1} = (0.169 \frac{1}{3})(0.14 m) = \frac{1.67 \frac{1}{3}}{0.024 \frac{1}{3}}$

6. A traveling wave in a string is given by

$$y(x,t) = (0.0150m)\cos[(40.0rad/s)t + (1.20rad/m)x].$$

Determine each of the following: (2 points each)

a) the wave speed.

Then use:

$$V = vore speed = \frac{w}{k} = \frac{(40.0/5)}{(1.20/m)} = \frac{33.3 \%}{5}$$

Golf's of X and to in any, of cusine

b) the direction of propagation.

Here the relative + sign between the x and t terms in the argument of the oscillatory term tells us that the wave travels in the

te constant,

if t increases

x must deciralse.

For the phase

c) the wavelength.

Since
$$k = \frac{2\pi}{\lambda}$$
 we have
$$\lambda = \frac{2\pi}{\lambda} = \frac{2\pi}{\lambda} = \frac{2\pi}{\lambda}$$

d) the velocity of the point on the string at x=2.00 m at time t=1.50 s.

Vehicity of the points of the string is given by

$$V_{s}(x,t) = \frac{\partial y}{\partial t} = -(0.0150 \, \text{m})(40.0/s) \sin [(40.0/s)t + (1.20/m)x]$$

Evaluate at x = 2.00 m, t = 1.505 (remember to use radians make on cale!)

- 7. An electrical wire having a linear density of 0.100 kg/m is attached to two poles 8.00 m apart. A small branch falling from a tree strikes the wire, causing it to vibrate in its second harmonic frequency of 20.0 Hz.
 - a) Calculate the tension in the wire. (4 points)

L = A = 8.00 m so that the special of warry on the wire is

$$v = \lambda f = (8.00 m)(20.0 /s) = 160. \frac{1}{3}$$

Then, from V = 1/2, solve for 7:

$$v^2 = \frac{\pi}{\mu}$$
 $\tau = \mu v = (0.100 \frac{1}{2})(160.\frac{1}{2})^2 = 2.56 \times 10^3 \text{ M}$

b) Approximately where, relative to the ends or/and center of the wire, did the branch hit the wire? (3 points)

The branch would have to give a large displacement to a position where the 2nd harmonic has large displacements, i.e. 4 of the wool from either end. (Actually, such an initial disturbance on the wire would also set the 1st harmonic into motion simultaneously.)

- a) A sound wave is a longitudinal wave. Tell what is meant by the term longitudinal wave.
- 2 points) A longitudinal wave is one for which the (small) displacements of the medium are parallel to the direction (2 points) of wave motion.
- b) A cylindrical tube is open on one end; one can adjust the height of the air column by lowering the bottom level. It is found that for a sound of a given frequency, the first (fundamental) resonance occurs when the column has a height of 20.0 cm. If we lower the bottom level until the very next resonance occurs, what is the new height of the air column? (3 points)

The first resonance occurs when $l = \frac{7}{4}$, so $\frac{7}{4} = 20.0$ cm. The next resonance occurs when $l = \frac{37}{4}$ (A stays the same) so $l = 3 \cdot (\frac{7}{4}) = 3(20.0 \text{ cm})$ = 160.0 cm | for the new height.

c) An ambulance whose siren plays a 600. Hz sound is driving directly toward a stationary listener; the listener hears a frequency of 650. Hz. What is the speed of the ambulance? [Use $343\frac{m}{s}$ as the speed of sound.] (5 points)

(Here the detector is stationary (Vo=0) and the source is moving toward the detector so that a higher frequency is heard. Choosing the correct sign in the "Doppler formula" we have

$$f' = 650 \text{ H}_3 = \left(\frac{V}{V - V_5}\right) f = \left(\frac{1}{1 - V_5 V}\right) (600 \text{ H}_3)$$

Solve for Vs =

a) 100.0 grams of an unknown metal at 100.0 °C is immersed in 200.0 g of water at 20.0 °C. When at equilibrium, both have a final temperature of 22.2°C. Ignore any losses of heat to the container or the surroundings. What is the specific heat of the unknown metal? [Specific heat of water is 4190 $\frac{1}{\log K}$.] (5 points)

Total heat gam of components is zero:

b) A gas undergoes the compression shown at the right: Starting at 1.00 atm of pressure and a volume of 2.00 m³, it is compressed to 2.00 atm of pressure and a volume of 1.00 m³, following a straight-line path on the P-V diagram. Find the work W done by the gas. Express the answer in joules. (5 points)

W= JPdV Absolute value of area under curve is

(1atm)(1m2) + 1 (1 atm)(1m2)