
Chapter 5

Capacitance and Dielectrics

5.1 The Important Stuff

5.1.1 Capacitance

Electrical energy can be stored by putting opposite charges ±q on a pair of isolated con-
ductors. Being conductors, the respective surfaces of these two objects are all at the same
potential so that it makes sense to speak of a potential difference V between the two conduc-

tors, though one should really write ∆V for this. (Also, we will usually just talk about “the
charge q” of the conductor pair though we really mean ±q.)

Such a device is called a capacitor. The general case is shown in Fig. 5.1(a). A particular
geometry known as the parallel plate capacitor is shown in Fig. 5.1(b).

It so happens that if we don’t change the configuration of the two conductors, the charge
q is proportional to the potential difference V . The proportionality constant C is called the
capacitance of the device. Thus:

q = CV (5.1)

The SI unit of capacitance is then 1 C
V
, a combination which is called the farad1. Thus:

1 farad = 1F = 1 C
V

(5.2)

The permittivity constant can be expressed in terms of this new unit as:

ε0 = 8.85 × 10−12 C2

N·m2 = 8.85 × 10−12 F
m

(5.3)

5.1.2 Calculating Capacitance

For various simple geometries for the pair of conductors we can find expressions for the
capacitance.

• Parallel-Plate Capacitor

1Named in honor of the. . . uh. . . Austrian physicist Jim Farad (1602–1796) who did some electrical exper-
iments in. . . um. . . Berlin. That’s it, Berlin.
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Figure 5.1: (a) Two isolated conductors carrying charges ±q: A capacitor! (b) A more common configu-
ration of conductors for a capacitor: Two isolated parallel conducting sheets of area A, separated by (small)
distance d.

The most common geometry we encounter is one where the two conductors are parallel
plates (as in Fig. 5.1(b), with the stipulation that the dimensions of the plates are “large”
compared to their separation to minimize the “fringing effect”.

For a parallel-plate capacitor with plates of area A separated by distance d, the capaci-
tance is given by

C =
ε0A

d
(5.4)

• Cylindrical Capacitor

In this geometry there are two coaxial cylinders where the radius of the inner conductor
is a and the inner radius of the outer conductor is b. The length of the cylinders is L; we
stipulate that L is large compared to b.

For this geometry the capacitance is given by

C = 2πε0

L

ln(b/a)
(5.5)

• Spherical Capacitor

In this geometry there are two concentric spheres where the radius of the inner sphere is
a and the inner radius of the outer sphere is b. For this geometry the capacitance is given
by:

C = 4πε0

ab

b − a
(5.6)

5.1.3 Capacitors in Parallel and in Series

• Parallel Combination: Fig. 5.2 shows a configuration where three capacitors are com-

bined in parallel across the terminals of a battery. The battery gives a constant potential
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Figure 5.2: Three capacitors are combined in parallel across a potential difference V (produced by a
battery).
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Figure 5.3: Three capacitors are combined in series across a potential difference V (produced by a battery).

difference V across the plates of each of the capacitors. The charges q1, q2 and q3 which
collect on the plates of the respective capacitors are not the same, but will be found from

q1 = c1V q2 = C2V q3 = C3V .

The total charge on the plates, q = q1 + q2 + q3 is related to the potential difference V by
q = CequivV , where Cequiv is the equivalent capacitance of the combination. In general, the
equivalent capacitance for a set of capacitors which are in parallel is given by

Cequiv =
∑

i

Ci Parallel (5.7)

• Series Combination: Fig. 5.3 shows a configuration where three capacitors are com-

bined in series across the terminals of a battery. Here the charges which collect on the
respective capacitor plates are the same (q) but the potential differences across the capaci-
tors are different . These potential differences can be found from

V1 =
q

C1

V2 =
q

C2

V3 =
q

C3

where the individual potential differences add up to give the total: V1 + V2 + V3 = V . In
general, the effective capacitance for a set of capacitors which are in series is

1

Cequiv

=
∑

i

1

Ci
Series (5.8)



74 CHAPTER 5. CAPACITANCE AND DIELECTRICS

5.1.4 Energy Stored in a Capacitor

When we consider the work required to charge up a capacitor by moving a charge −q from
on plate to another we arrive at the potential energy U of the charges, which we can view
as the energy stored in the electric field between the plates of the capacitor. This energy is:

U =
q2

2C
= 1

2
CV 2 (5.9)

If we associate the energy in Eq. 5.9 with the region where there is any electric field, the
interior of the capacitor (the field is effectively zero outside) then we arrive at an energy per
unit volume for the electric field, i.e. an energy density, u. It is:

u = 1
2
ε0E

2 (5.10)

This result also holds for any electric field, regardless of its source.

5.1.5 Capacitors and Dielectrics

If we fill the region between the plates of a capacitor with an insulating material the capac-
itance will be increased by some numerical factor κ:

C = κCair . (5.11)

The number κ (which is unitless) is called the dielectric constant of the insulating material.

5.2 Worked Examples

5.2.1 Capacitance

1. Show that the two sets of units given for ε0 in Eq. 5.3 are in fact the same.
Start with the new units for ε0,

F
m

. From Eq. 5.2 we substitute 1F = 1 C
V

so that

1 F
m

= 1 C/V

m
= 1 C

V·m

Now use the definition of the volt from Eq. 4.4: 1V = 1J/C = 1N · m/C to get

1 F
m

= 1 C
N·m

C
·m

= 1 C2

N·m2

So we arrive at the original units of ε0 given in Eq. 1.4.

2. The capacitor shown in Fig. 5.4 has capacitance 25µF and is initially un-
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Figure 5.4: Battery and capacitor for Example 2.
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Figure 5.5: Capacitor described in Example 3.

charged. The battery provides a potential difference of 120V. After switch S is
closed, how much charge will pass through it?

When the switch is closed, then the charge q which collects on the capacitor plates is
given by q = CV . Plugging in the given values for the capacitance C and the potential
difference V , we find:

q = CV = (25 × 10−6 F)(120V)

= 3.0 × 10−3 C = 3.0mC

This is the amount of charge which has been exchanged between the top and bottom plates
of the capacitor. So 3.0mC of charge has passed through the switch.

5.2.2 Calculating Capacitance

3. A parallel–plate capacitor has circular plates of 8.2 cm radius and 1.3mm sepa-
ration. (a) Calculate the capacitance. (b) What charge will appear on the plates
if a potential difference of 120V is applied?

(a) The capacitor is illustrated in Fig. 5.5. The area of the plates is A = πr2 so that with
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r = 8.2 cm and d = 1.3mm and using Eq. 5.4 we get:

C =
ε0A

d
=

ε0πr2

d

=
(8.85 × 10−12 F

m
)π(8.2× 10−2 m)2

(1.3 × 10−3 m)

= 1.4 × 10−10 F = 140pF

(b) When a potential of 120V is applied to the plates of the capacitor the charge which
appears on the plates is

q = CV = (1.4 × 10−10 F)(120V) = 1.7 × 10−8 C = 17nC

4. You have two flat metal plates, each of area 1.00m2, with which to construct
a parallel-plate capacitor. If the capacitance of the device is to be 1.00F, what
must be the separation between the plates? Could this capacitor actually be
constructed?

In Eq. 5.4 (formula for C for a parallel-plate capacitor) we have C and A. We can solve
for the separation d:

C =
ε0A

d
=⇒ d =

ε0A

C

Plug in the numbers:

d =
(8.85 × 10−12 F

m
)(1.00m2)

(1.00F)
= 8.85 × 10−12 m

This is an extremely tiny length if we are thinking about making an actual device, because
the typical “size” of an atom is on the order of 1.0× 10−10 m. Our separation d is ten times
smaller than that, so the atoms in the plates would not be truly separated! So a suitable
capacitor could not be constructed.

5. A 2.0−µF spherical capacitor is composed of two metal spheres, one having a
radius twice as large as the other. If the region between the spheres is a vacuum,
determine the volume of this region.

The capacitance of a (“air–filled”) spherical capacitor is

C = 4πε0

ab

(b − a)
.

where a and b are the radii of the concentric spherical plates. Here we are given that b = 2a,
so we then have:

C = 4πε0

2a2

a
= 8πε0a
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Figure 5.6: Configuration of capacitors for Example 6.

We are given the value of C so we can solve for a:

a =
C

8πε0

=
(2.0 × 10−6 F)

8π(8.85 × 10−12 F
m

)
= 9.0 × 103 m (!)

so that b = 2a = 1.8 × 104 m.
Then the volume of the enclosed region between the two plates is:

Venc = 4
3
πb3 − 4

3
πa3 = 4

3
π((2a)3 − a3) = 4

3
π(7a3)

= 2.1 × 1013 m3

5.2.3 Capacitors in Parallel and in Series

6. In Fig. 5.6, find the equivalent capacitance of the combination. Assume that
C1 = 10.0µF, C2 = 5.00µF, and C3 = 4.00µF

The configuration given in the figure is that of a series combination of two capacitors
(C1 and C2) combined in parallel with a single capacitor (C3). We can use the reduction
formulae Eq. 5.8 and Eq. 5.7 to give a single equivalent capacitance.

First combine the series capacitors with Eq. 5.8. The equivalent capacitance is:

1

Cequiv

=
1

10.0µF
+

1

5.00µF
= 0.300µF−1 =⇒ Cequiv = 3.33µF

After this reduction, the configuration is as shown in Fig. 5.7(a). Now we have two capacitors
in parallel. By Eq. 5.7 the equivalent capacitance is just the sum of the two values:

Cequiv = 3.33µF + 4.00µF = 7.33µF

The final equivalent capacitance is shown in Fig. 5.7(b).
The equivalent capacitance of the combination is 7.33µF.

7. How many 1.00µF capacitors must be connected in parallel to store a charge
of 1.00C with a potential of 110V across the capacitors?
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Figure 5.7: (a) Series capacitors in previous figure have been combined as a single equivalent capacitor.
(b) Parallel combination in (a) has been combined to give a single equivalent capacitor.
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Figure 5.8: n capacitors in parallel, for Example 7.

In this problem we imagine a configuration like that shown in Fig. 5.8, where we have n
capacitors with C = 1.00µF connected in parallel across a potential difference of V = 110V.
Since parallel capacitors simply add to give the equivalent capacitance (see Eq. 5.7) we have
Cequiv = nC , and the potential difference across the combination is related to the total charge
qtot on the plates by qtot = CequivV = nCV . We then use this to solve for n:

n =
qtot

CV
=

(1.00C)

(1.00 × 10−6 F)(110V)
= 9.09 × 103 .

So one would need to hook up n = 9090 capacitors (!) to store the 1.00C of charge.

8. Each of the uncharged capacitors in Fig. 5.9 has a capacitance of 25.0µF. A
potential difference of 4200V is established when the switch is closed. How many
coulombs of charge then pass through the meter A?

The (total) charge which passes through the (current) meter A is the total charge which
collects on the plates of the three capacitors. We note that for each capacitor the potential
difference across the plates (after the switch is closed) is 4200V. So the charge on each
capacitor is

q = CV = (25.0 × 10−6 F)(4200V) = 0.105C

and the total charge is
qTotal = 3(0.105C) = 0.315C .
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Figure 5.9: Configuration of capacitors for Example 8.
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Figure 5.10: Combination of capacitors for Example 9.

So this is the amount of charge which passes through meter A.
We could also note that the equivalent capacitance of the three parallel capacitors is

Cequiv = 3(25.0µF) = 75.0µF

and with 4200V across the leads of the equivalent capacitance the total charge which collects
on the plates is

qTotal = CequivV = (75.0 × 10−6 F)(4200V) = 0.315C .

9. Four capacitors are connected as shown in Fig. 5.10. (a) Find the equivalent
capacitance between points a and b. (b) Calculate the charge on each capacitor
if Vab = 15V.

(a) To get the equivalent capacitance of the set of capacitors between a and b: First note
that the 15µF and 3.0µF capacitors are in series so they combine as:

1

Cequiv

=
1

15µF
+

1

3.0µF
= 0.40µF−1 =⇒ Cequiv = 2.5µF

After this reduction, the configuration is as shown in Fig. 5.11(a). The reduced circuit now
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Figure 5.11: (a) After ”reduction” of the series pair. (b) After combining two parallel capacitances.

has 2.5µF and 6.0µF capacitors in parallel which combine as:

Cequiv = 2.5µF + 6.0µF = 8.5µF

which gives us the combination shown in 5.11(b).
Finally, the 8.5µF and 20µF capacitors in series reduce to:

1

Cequiv

=
1

8.5µF
+

1

20µF
= 0.168µF−1 =⇒ Cequiv = 5.96µF

so the equivalent capacitance between points a and b is 5.96µF.

(b) Since the equivalent capacitance between a and b is 5.96µF, the charge which collects
on either end of the combination is

Q = CequivVab = (5.96 × 10−6 F)(15V = 8.95 × 10−5 C

This is the same as the charge on the far end of the 20µF capacitor (and thus on either plate
of that capacitor) , so we have the charge on that capacitor:

Q20µF = 8.95 × 10−5 C

Now we can find the potential difference across the 20µF capacitor:

V20 µF =
Q20µF

C20µF

=
(8.95 × 10−5 C)

(20 × 10−6 F)
= 4.47V

With this value, we can find the potential difference between points a and c (see Fig. 5.12):

Vac = 15.0V − 4.47V = 10.5V

This is now the potential difference across the 6.0µF capacitor, so we can find its charge:

Q6.0µF = (6.0 × 10−6 F)(10.5V) = 6.32 × 10−5 C
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Figure 5.12: Point c comes just before the 20 µF capacitor. Find Vac by subtracting V20 µF from 15 V
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Figure 5.13: Capacitor configuration for Example 10. (a) before switches are closed. (b) After switches
are closed, charges redistribute on the plates of C1 and C2.

Finally, we note that the potential difference across the 15µF — 3.0µF series pair is also
10.5V. Now, the equivalent capacitance of this pair was 2.50µF, so that the charge which
collects on each end of this combination is

Q = CequivV = (2.5 × 10−6 F)(10.5V) = 2.63 × 10−5 C .

But this is the same as the charge on the outer plates of the two capacitors, and that means
that both capacitors have the same charge, namely:

Q15µF = Q3.0µF = 2.63 × 10−5 C

We now have the charges on all four of the capacitors.

10. In Fig. 5.13(a), the capacitances are C1 = 1.0µF and C2 = 3.0µF and both
capacitors are charged to a potential difference of V = 100V but with opposite
polarity as shown. Switches S1 and S2 are now closed. (a) What is now the
potential difference between a and b? What are now the charges on capacitors
(b) 1 and (c) 2?
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Let’s first find the charges which the capacitors had before the switch was closed. For C1

the magnitude of its charge was

Q1 = C1V = (1.0µF)(100V) = 1.00 × 10−4 C

What we mean here is that the upper plate of C1 had a charge of 1.00× 10−4 C, because the
polarity matters here! So the lower plate of C1 had a charge of −1.00 × 10−4 C.

For C2, the magnitude of its charge was

Q2 = C2V = (3.0µF)(100V) = 3.00 × 10−4 C

but here we mean that the upper plate of C2 had a charge of −3.00× 10−4 C because of the
polarity indicated in Fig. 5.13(a). So its lower plate had a charge of +3.00 × 10−4 C.

We note that the total charge on the upper plates is

Q1,upper + Q1,upper = −2.00 × 10−4 C

and the total charge on the lower plates is +2.00 × 10−4 C.
Now when the switches are closed the charges on the upper plates will redistribute them-

selves on the upper plates of C1 and C2. Lets call these new charges (on the upper plates)
Q′

1 and Q′

2. We note that since the total charge on the upper plates was negative then it
is a net negative charge which shifts around on the upper plates and Q′

1 and Q′

2 are both
negative, as indicated in Fig. 5.13(b). By conservation of charge, the total is still equal to
−2.00 × 10−4 C:

Q′

1 + Q′

2 = −2.00 × 10−4 C

Though we don’t yet know the new potential difference across each capacitor, we do know
that it is the same for both. Actually, we know that b must be at the higher potential; we
will let the potential change in going from a to b be called V ′. Now, the potential for each
capacitor is found from V = Q/C; actually because of the polarities here (the Q’s being
negative) we need a minus sign, but the fact that the potential differences are the same

across both capacitors gives:

V ′ =
−Q′

1

C1

=
−Q′

2

C2

=⇒ Q′

2 =
C2

C1

Q′

1 =

(

3.0µF

1.0µF

)

Q′

1 = 3.0Q′

1

Substituting this result into the previous one gives

Q′

1 + 3.0Q′

1 = −2.0 × 10−4 C =⇒ Q′

1 =
−2.0 × 10−4 C

4.0
= −5.0 × 10−5 C

Having solved for one of the unknowns, we’re nearly finished!
The change in potential as we go from a to b is then:

V ′ =
−Q′

1

C1

=
+5.0 × 10−5 C

1.0 × 10−6 F
= 50V

(b) The magnitude of the new charge on capacitor 1 is |Q′

1| = 5.0 × 10−5 C
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Figure 5.14: Configuration of capacitors and potential difference with switch for Example 11.

(c) Using Q′

2 = 3.0Q′

1, the magnitude of the new charge on the second capacitor is

|Q′

2| = 3.0|Q′

1| = 3.0(5.0 × 10−5 C) = 1.5 × 10−4 C .

11. When switch S is thrown to the left in Fig. 5.14, the plates of capacitor
1 acquire a potential difference V0. Capacitors 2 and 3 are initially uncharged.
The switch is now thrown to the right. What are the final charges q1, q2 and q3

on the capacitors?

Initially the only capacitor with a charge is C1, with a charge given by:

q1, init = C1V0 (5.12)

since the potential across its plates is V0.
Now consider what happens when the switch is thrown to the right and the capacitors

have charges q1, q2 and q3. Since C2 and C3 are joined in series, their charges will be equal, so
q2 = q3 and we only need to find q2. Also, note that the upper plate of C1 is only connected
to the upper plate of C2 so that q1 and q2 must add up to give the original charge on C1:

q1 + q2 = q1, init (5.13)

Finally, we note that the potential difference across C1 is equal to the potential difference
across the C2-C3 series combination. The equivalent capacitance of the C2-C3 combination
is:

1

Cequiv

=
1

C2

+
1

C3

=
C2 + C3

C2C3

=⇒ Cequiv =
C2C3

C2 + C3

The potential across C1 is q1/C1, and the potential across the series pair is q2/Cequiv. So
equating the potential differences gives

q1

C1

=
q2

Cequiv

=
(

C2 + C3

C2C3

)

q2 (5.14)

And that’s all the equations we need; we can now solve for q1 and q2. Eq. 5.14 gives

q2 =
1

C1

C2C3

C2 + C3

q1 (5.15)
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and then substitute this and also Eq. 5.12 into Eq. 5.13. We get:

q1 +
1

C1

C2C3

C2 + C3

q1 = C1V0

Factor out q1 on the left:

(

1 +
1

C1

C2C3

C2 + C3

)

q1 =

(

C1(C2 + C3) + C2C3

C1(C2 + C3)

)

q1 = C1V0

Now we can isolate q1:

q1 =
C2

1(C2 + C3)

C1C2 + C1C3 + C2C3

V0

Then go back and use Eq. 5.15 to get q2:

q2 =
1

C1

C2C3

(C2 + C3)
q1 =

1

C1

C2C3

(C2 + C3)

C2
1(C2 + C3)

(C1C2 + C1C3 + C2C3)
V0

=
C1C2C3

C1C2 + C1C3 + C2C3

V0

Finally, we recall that q3 = q2. This gives us expressions for all three charges in terms of the
initial parameters.

5.2.4 Energy Stored in a Capacitor

12. How much energy is stored in one cubic meter of air due to the “fair weather”
electric field of magnitude 150V/m?

From Eq. 5.10 we have the energy density of an electric field. (As noted there, the source

of the electric field is irrelevant.) We get:

u = 1
2
ε0E

2

= 1
2
(8.85 × 10−12 C2

N·m2 )(150V
m

)2 = 9.96 × 10−8 J
m3

So in one cubic meter, 9.96 × 10−8 J of energy are stored.

13. What capacitance is required to store an energy of 10 kW · h at a potential
difference of 1000V?

First, convert the given energy to some sensible units!

E = 10kW · h = 10 × 103 J
s
· (1 h)

(

3600 s

1 h

)

= 3.60 × 107 J
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Figure 5.15: (a) Capacitor configuration for Example 14. (b) Equivalent capacitor.

Then use Eq. 5.9 for the energy stored in a capacitor:

E = 1
2
CV 2 =⇒ C =

2E

V 2

Plug in the numbers:

C =
2(3.60 × 107 J)

(1000V)2
= 72F

A capacitance of 72F (big!) is needed.

14. Two capacitors, of 2.0 and 4.0µF capacitance, are connected in parallel across
a 300V potential difference. Calculate the total energy stored in the capacitors.

The capacitors and potential difference are diagrammed in Fig. 5.15(a). For the purpose
of finding the total energy in the capacitors we can replace the two parallel capacitors with
a single equivalent capacitor of value 6.0µF (the original two were in parallel , so we sum the
values). This is because the charge which collects on the equivalent capacitor is the sum of
charges on the plates of the original two capacitors.

Then the energy stored is

E = 1
2
CV 2 = 1

2
(6.0 × 10−6 F)(300V)2 = 0.27 J
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Appendix A: Useful Numbers

Conversion Factors

Length cm meter km in ft mi

1 cm = 1 10−2 10−5 0.3937 3.281 × 10−2 6.214 × 10−6

1m = 100 1 10−3 39.37 3.281 6.214 × 10−4

1 km = 105 1000 1 3.937 × 104 3281 06214
1 in = 2.540 2.540 × 10−2 2.540 × 10−5 1 8.333 × 10−2 1.578 × 10−5

1 ft = 30.48 0.3048 3.048 × 10−4 12 1 1.894 × 10−4

1mi = 1.609 × 105 1609 1.609 6.336 × 104 5280 1

Mass g kg slug u
1 g = 1 0.001 6.852 × 10−2 6.022 × 1026

1 kg = 1000 1 6.852 × 10−5 6.022 × 1023

1 slug = 1.459 × 104 14.59 1 8.786 × 1027

1u = 1.661 × 10−24 1.661 × 10−27 1.138 × 10−28 1

An object with a weight of 1 lb has a mass of 0.4536 kg.

Constants:

e = 1.6022 × 10−19 C = 4.8032 × 10−10 esu

ε0 = 8.85419 × 10−12 C2

N·m2

k = 1/(4πε0) = 8.9876 × 109 N·m2

C2

µ0 = 4π × 10−7 N
A2 = 1.2566 × 10−6 N

A2

melectron = 9.1094 × 10−31 kg

mproton = 1.6726 × 10−27 kg

c = 2.9979 × 108 m
s

NA = 6.0221 × 1023 mol−1
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