
Chapter 1

Electric Charge; Coulomb’s Law

1.1 The Important Stuff

1.1.1 Introduction

During the second semester of your introductory year of physics you will study two special
types of forces which occur in nature as a result of the fact that the constituents of matter
have electric charge; these forces are the electric force and the magnetic force. In fact,
the study of electromagnetism adds something completely new to the ideas of the mechanics
from first semester physics, namely the concept of the electric and magnetic fields . These
entities are just as real as the masses and forces from first semester and they take center
stage when we discuss the phenomenon of electromagnetic radiation, a topic which includes
the behavior of visible light.

The entire picture of matter and fields which we will have at the end of this study is
known as classical physics, but this picture, while complete enough for many fields of
engineering, is not a complete statement of the laws of nature (as we now know them).
New phenomena which were discovered in the early 20th century demanded revisions in
our thinking about the relation of space and time (relativity) and about phenomena on
the atomic scale (quantum physics). Relativity and quantum theory are often known
collectively as modern physics.

1.1.2 Electric Charge

The phenomenon we recognize as “static electricity” has been known since ancient times.
It was later found that there is a physical quantity known as electric charge that can be
transferred from one object to another. Charged objects can exert forces on other charged
objects and also on uncharged objects. Finally, electric charge comes in two types, which we
choose to call positive charge and negative charge.

Substances can be classified in terms of the ease with which charge can move about on
their surfaces. Conductors are materials in which charges can move about freely; insula-
tors are materials in which electric charge is not easily transported.
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Electric charge can be measured using the law for the forces between charges (Coulomb’s
Law). Charge is a scalar and is measured in coulombs 1. The coulomb is actually defined

in terms of electric current (the flow of electrons), which is measured in amperes2; when
the current in a wire is 1 ampere, the amount of charge that flows past a given point in the
wire in 1 second is 1 coulomb. Thus,

1 ampere = 1A = 1 C
s

.

As we now know, when charges are transferred by simple interactions (i.e. rubbing), it
is a negative charge which is transferred, and this charge is in the form of the fundamental
particles called electrons. The charge of an electron is 1.6022 × 10−19 C, or, using the
definition

e = 1.602177 × 10−19 C (1.1)

the electron’s charge is −e. The proton has charge +e. The particles found in nature all
have charges which are integral multiples of the elementary charge e: q = ne where
n = 0, ±1, ±2 . . .. Because of this, we say that charge is quantized.

The mass of the electron is

me = 9.1094 × 10−31 kg (1.2)

1.1.3 Coulomb’s Law

Coulomb’s Law gives the force of attraction or repulsion between two point charges. If
two point charges q1 and q2 are separated by a distance r then the magnitude of the force of
repulsion or attraction between them is

F = k
|q1| |q2|

r2
where k = 8.9876 × 109 N·m2

C2 (1.3)

This is the magnitude of the force which each charge exerts on the other charge (recall
Newton’s 3rd law). The symbol k as used here has to do with electrical forces; it has nothing
to do with any spring constants or Boltzmann’s constant!

If the charges q1 and q2 are of the same sign (both positive or both negative) then the
force is mutually repulsive and the force on each charge points away from the other charge.
If the charges are of opposite signs (one positive, one negative) then the force is mutually
attractive and the force on each charge points toward the other one. This is illustrated in
Fig. 1.1.

The constant k in Eq. 1.3 is often written as

k =
1

4πε0
where ε0 = 8.85419 × 10−12 C2

N·m2 (1.4)

1Named in honor of the. . . uh. . .Dutch physicist Jim Coulomb (1766–1812) who did some electrical ex-
periments in. . . um. . . Paris. That’s it, Paris.

2Named in honor of the. . . uh. . . German physicist Jim Ampere (1802–1807) who did some electrical
experiments in. . . um. . .Düsseldorf. That’s it, Düsseldorf.
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Figure 1.1: (a) Charges q1 and q2 have the same sign; electric force is repulsive. (b) Charges q1 and q2

have opposite signs; electric force is attractive.

for historical reasons but also because in later applications the constant ε0 is more convenient.
ε0 is called the permittivity constant 3

When several points charges are present, the total force on a particular charge q0 is the
vector sum of the individual forces gotten from Coulomb’s law. (Thus, electric forces have a
superposition property.) For a continuous distribution of charge we need to divide up the
charge distribution into infinitesimal pieces and add up the individual forces with integrals
to get the net force.

1.2 Worked Examples

1.2.1 Electric Charge

1. What is the total charge of 75.0 kg of electrons? [HRW6 22-19]

The mass of one electron is 9.11 × 10−31 kg, so that a mass M = 75.0 kg contains

N =
M

me
=

(75.0 kg)

(9.11 × 10−31 kg)
= 8.23 × 1031 electrons

The charge of one electron is −e = −1.60 × 10−19 C, so that the total charge of N
electrons is:

Q = N(−e) = (8.23 × 1031)(−1.60 × 10−19 C) = −1.32 × 1013 C

2. (a) How many electrons would have to be removed from a penny to leave it
with a charge of +1.0×10−7 C? (b) To what fraction of the electrons in the penny
does this correspond? [A penny has a mass of 3.11 g; assume it is made entirely
of copper.] [HRW6 22-23]

3In these notes, k will be used mainly in the first chapter; thereafter, we will make increasing use of ε0!
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(a) From Eq. 1.1 we know that as each electron is removed the penny picks up a charge of
+1.60 × 10−19 C. So to be left with the given charge we need to remove N electrons, where
N is:

N =
qTotal

qe
=

(1.0 × 10−7 C)

(1.60 × 10−19 C)
= 6.2 × 1011 .

(b) To answer this part, we will need the total number of electrons in a neutral penny; to
find this, we need to find the number of copper atoms in the penny and use the fact that
each (neutral) atom contains 29 electrons. To get the moles of copper atoms in the penny,
divide its mass by the atomic weight of copper:

nCu =
(3.11 g)

(63.54 g
mol

)
= 4.89 × 10−2 mol

The number of copper atoms is

NCu = nCuNA = (4.89 × 10−2 mol)(6.022 × 1023 mol−1) = 2.95 × 1022

and the number of electrons in the penny was (originally) 29 times this number,

Ne = 29NCu = 29(2.95 × 1022) = 8.55 × 1023

so the fraction of electrons removed in giving the penny the given electric charge is

f =
(6.2 × 1011)

(8.55 × 1023)
= 7.3 × 10−13

A very small fraction!!

1.2.2 Coulomb’s Law

3. A point charge of +3.00 × 10−6 C is 12.0 cm distant from a second point charge
of −1.50 × 10−6 C. Calculate the magnitude of the force on each charge. [HRW6 22-2]

Being of opposite signs, the two charges attract one another, and the magnitude of this
force is given by Coulomb’s law (Eq. 1.3),

F = k
|q1q2|

r2

= (8.99 × 109 N·m2

C2 )
(3.00 × 10−6 C)(1.50 × 10−6 C)

(12.0 × 10−2 m)2
= 2.81N

Each charge experiences a force of attraction of magnitude 2.81N.
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Figure 1.2: Simple picture of a nucleus just after fission. Uniformly charged spheres are “touching”.

4. What must be the distance between point charge q1 = 26.0µC and point charge
q2 = −47.0µC for the electrostatic force between them to have a magnitude of
5.70N? [HRW6 22-1]

We are given the charges and the magnitude of the (attractive) force between them. We
can use Coulomb’s law to solve for r, the distance between the charges:

F = k
|q1q2|

r2
=⇒ r2 = k

|q1q2|
F

Plug in the given values:

r2 = (8.99 × 109 N·m2

C2 )
(26.0 × 10−6 C)(47.0 × 10−6 C)

(5.70N)
= 1.93m2

This gives:

r =
√

1.93m2 = 1.39m

5. In fission, a nucleus of uranium–238, which contains 92 protons, divides into
two smaller spheres, each having 46 protons and a radius of 5.9 × 10−15 m. What
is the magnitude of the repulsive electric force pushing the two spheres apart?
[Ser4 23-6]

The basic picture of the nucleus after fission described in this problem is as shown in
Fig. 1.2. (Assume that the edges of the spheres are in contact just after the fission.) Now, it
is true that Coulomb’s law only applies to two point masses, but it seems reasonable to take
the separation distance r in Coulomb’s law to be the distance between the centers of the
spheres. (This procedure is exactly correct for the gravitational forces between two spherical
objects, and because Coulomb’s law is another inverse–square force law it turns out to be
exactly correct in the latter case as well.)

The charge of each sphere (that is, each nucleus) here is

q = +Ze = 46(1.602 × 10−19 C) = 7.369 × 10−18 C .
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The separation of the centers of the spheres is 2R, so the distance we use in Coulomb’s law
is

r = 2R = 2(5.9 × 10−15 m) = 1.18 × 10−14 m

so from Eq. 1.3 the magnitude of the force between the two charged spheres is

F = k
|q1| |q2|

r2

= (8.99 × 109 N·m2

C2 )
(7.369 × 10−18 C)(7.369 × 10−18 C)

(1.18 × 10−14 m)2
= 3.5 × 103 N .

The force between the two fission fragments has magnitude 3.5× 103 N, and it is a repulsive

force since the fragments are both positively charged.

6. Two small positively charged spheres have a combined charge of 5.0 × 10−5 C.
If each sphere is repelled from the other by an electrostatic force of 1.0N when
the spheres are 2.0m apart, what is the charge on each sphere? [HRW5 22-12]

We are are not given the values of the individual charges; let them be q1 and q2. The
condition on the combined charge of the spheres gives us:

q1 + q2 = 5.0 × 10−5 C . (1.5)

The next condition concerns the electrostatic force, and so it involves Coulomb’s Law.
Now, Eq. 1.3 involves the absolute values of the charges so we need to be careful with the
algebra. . . but in this case we know that both charges are positive because their sum is
positive and they repel each other. Thus |q1| = q1 and |q2| = q2, and the next condition gives
us:

F = k
q1q2

r2
= 1.0N

As we know k and r, this give us the value of the product of the charges:

q1q2 =
(1.0N)r2

k
=

(1.0N)(2.0m)2

(

8.99 × 109 N·m2

C2

) = 4.449 × 10−10 C2 (1.6)

With Eqs. 1.5 and 1.6 we have two equations for the two unknowns q1 and q2. We can

solve for them; the rest is math! Here’s my approach to solving the problem:
From Eq. 1.5 we have:

q2 = 5.0 × 10−5 C − q1 (1.7)

Substitute for q2 in Eq. 1.6 and get:

q1(5.0 × 10−5 C − q1) = 4.449 × 10−10 C2

which gives us a quadratic equation for q1:

q2
1 − (5.0 × 10−5 C)q1 + 4.449 × 10−10 C2 = 0
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Figure 1.3: (a) Two unknown charges on identical conducting spheres, separated by 50.0 cm, in Example 7.
(b) When joined by a wire, the charge evenly divides between the spheres with charge Q on each, such that
q1 + q2 = 2Q.

which we all know how to solve. The two possibilities for q1 are:

q1 =
(5.0 × 10−5) ±

√

(5.0 × 10−5)2 − 4(4.449 × 10−10)

2
C =

{

3.84 × 10−5 C
1.16 × 10−5 C

(Hmm. . . how do we deal with two answers? We’ll see. . . )
Using the two possibilities for q1 give:

q1 = 3.84 × 10−5 C =⇒ q2 = 5.0 × 10−5 C − q1 = 1.16 × 10−5 C

q1 = 1.16 × 10−5 C =⇒ q2 = 5.0 × 10−5 C − q1 = 3.84 × 10−5 C

Actually, these are both the same answer, because our numbering of the charges was arbi-
trary. The answer is that one of the charges is 1.16 × 10−5 C and the other is 3.84× 10−5 C.

7. Two identical conducting spheres, fixed in place, attract each other with
an electrostatic force of 0.108N when separated by 50.0 cm, center-to-center. The
spheres are then connected by a thin conducting wire. When the wire is removed,
the spheres repel each other with an electrostatic force of 0.360N. What were
the initial charges on the spheres? [HRW6 22-7]

The initial configuration of the spheres is shown in Fig. 1.3(a). Let the charges on the
spheres be q1 and q2. If the force of attraction between them has magnitude 0.108N, then
Coulomb’s law gives us

F = k
|q1q2|

r2
= (8.99 × 109 N·m2

C2 )
|q1q2|

(0.500m)2
= 0.108N

from which we get

|q1q2| =
(0.108N)(0.500m)2

(8.99 × 109 N·m2

C2 )
= 3.00 × 10−12 C2

But since we are told that the charges attract one another, we know that q1 and q2 have
opposite signs and so their product must be neagtive. So we can drop the absolute value
sign if we write

q1q2 = −3.00 × 10−12 C2 (1.8)
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Then the two spheres are joined by a wire. The charge is now free to re–distribute itself
between the two spheres and since they are identical the total excess charge (that is, 11 + q2)
will be evenly divided between the two spheres. If the new charge on each sphere is Q, then

Q + Q = 2Q = q1 + q2 (1.9)

The force of repulsion between the spheres is now 0.0360N, so that

F = k
Q2

r2
= (8.99 × 109 N·m2

C2 )
Q2

(0.500m)2
= 0.0360N

which gives

Q2 =
(0.0360N)(0.500m)2

(8.99 × 109 N·m2

C2 )
= 1.00 × 10−12C2

We don’t know what the sign of Q is, so we can only say:

Q = ±1.00 × 10−6 C (1.10)

Putting 1.10 into 1.9, we get

q1 + q2 = 2Q = ±2.00 × 10−6 C (1.11)

and now 1.8 and 1.11 give us two equations for the two unknowns q1 and q2, and we’re in
business!

First, choosing the + sign in 1.11 we have

q2 = 2.00 × 10−6 C − q1 (1.12)

and substituting this into 1.8 we have:

q1(2.00 × 10−6 C − q1) = −3.00 × 10−12 C2

which we can rewrite as

q2
1 − (2.00 × 10−6 C)q1 − 3.00 × 10−12 C2 = 0

which is a quadratic equation for q1. When we find the solutions; we get:

q1 = 3.00 × 10−6 C or q1 = −1.00 × 10−6 C

Putting these possibilities into 1.12 we find

q2 = −1.00 × 10−6 C or q2 = 3.00 × 10−6 C

but these really give the same answer: One charge is −1.00 × 10−6 C and the other is
+3.00 × 10−6 C.
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Now make the other choice in 1.11. Then we have

q2 = −2.00 × 10−6 C − q1 (1.13)

Putting this into 1.8 we have:

q1(−2.00 × 10−6 C − q1) = −3.00 × 10−12 C2

which we can rewrite as

q2
1 + (2.00 × 10−6 C)q1 − 3.00 × 10−12 C2 = 0

which is a different quadratic equation for q1, and which has the solutions

q1 = −3.00 × 10−6 C or q1 = 1.00 × 10−6 C

Putting these into 1.13 we get

q2 = 1.00 × 10−6 C or q2 = −3.00 × 10−6 C

but these really give the same answer: One charge is +1.00 × 10−6 C and the other is
−3.00 × 10−6 C.

So in the end we have two distinct possibilities for the initial charges q1 and q2 on the
spheres. They are

−1.00µC and + 3.00µC

and
+1.00µC and − 3.00µC

8. A certain charge Q is divided into two parts q and Q − q, which are then
separated by a certain distance. What must q be in terms of Q to maximize the
electrostatic repulsion between the two charges? [HRW6 22-13]

If the distance between the two (new) charges is r, then the magnitude of the force
between them is

F = k
(Q − q)q

r2
=

k

r2
(qQ− q2) .

(We know that Q and Q − q both have the same sign so that Q(Q − q) is necessarily a
positive number. Force between the charges is repulsive.) To find the value of q which give
maximum F , take the derivative of F with respect to q and find where it is zero:

dF

dq
=

k

r2
(Q− 2q) = 0

which has the solution

(Q − 2q) = 0 =⇒ q =
Q

2
.
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q = -e/3 q = -e/3

r

r = 2.6 x 10-15  m

Figure 1.4: Two down quarks, each with charge −e/3, separated by 2.6× 10−15 m, in Example 9.

So the maximum repulsive force is gotten by dividing the original charge Q in half.

9. A neutron consists of one “up” quark of charge +2e
3

and two “down” quarks
each having charge − e

3
. If the down quarks are 2.6 × 10−15 m apart inside the

neutron, what is the magnitude of the electrostatic force between them? [HRW5

22-24]

We picture the two down quarks as in Fig. 1.4. We use Coulomb’s law to find the force
between them. (It is repulsive since the quarks have the same charge.) The two charges are:

q1 = q2 = −e

3
= −(1.60 × 10−19 C)

3
= −5.33 × 10−20 C

and the separation is r = 2.6 × 10−15 m. The magnitude of the force is

F = k
|q1| |q2|

r2
=
(

8.99 × 109 N·m2

C2

) (5.33 × 10−20 C)(5.33 × 10−20 C)

(2.6 × 10−15 m)2
= 3.8N

The magnitude of the (repulsive) force is 3.8N.

10. The charges and coordinates of two charged particles held fixed in the xy
plane are: q1 = +3.0µC, x1 = 3.5 cm, y1 = 0.50 cm, and q2 = −4.0µC, x2 = −2.0 cm,
y2 = 1.5 cm. (a) Find the magnitude and direction of the electrostatic force on
q2. (b) Where could you locate a third charge q3 = +4.0µC such that the net
electrostatic force on q2 is zero? [HRW6 22-12]

(a) First, make a sketch giving the locations of the charges. This is done in Fig. 1.5. (Clearly,
q2 will be attracted to q1; the force on it will be to the right and downward.)

Find the distance between q2 and q1. It is

r =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(−2.0 − 3.5)2 + (1.5 − 0.50)2 cm = 5.59 cm
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Figure 1.5: Locations of charges in Example 10.

y

x
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Figure 1.6: Placement of q3 such as to give zero net force on q2.

Then by Coulomb’s law the force on q2 has magnitude

F = k
|q1||q2|

r2
= (8.99 × 109 N·m2

C2 )
(3.0 × 10−6 C)(4.0 × 10−6 C)

(5.59 × 10−2 m)2
= 35N

Since q2 is attracted to q1, the direction of this force is the same as the vector which
points from q2 to q1. That vector is

r12 = (x1 − x2)i + (y1 − y2)j = (5.5 cm)i + (−1.0 cm)j

The direction (angle) of this vector is

θ = tan−1
(−1.0

5.5

)

= −10.3◦

(b) The force which the +4.0µC charge exerts on q2 must cancel the force we calculated in
part (a) (i.e. the attractive force from q1). Since this charge will exert an attractive force
on q2, we must place it on the line which joins q1 and q2 but on the other side of q2. This is
shown in Fig. 1.6.

First, find the distance r′ between q3 and q2. The force of q3 on q2 must also have
magnitude 35N; this allows us to solve for r′:

F = k
|q2||q3|

r′2
⇒ r′

2
= k

|q2||q3|
F
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+q +q

Figure 1.7: Charged masses hang from strings, as described in Example 11.

Plug in the numbers:

r′
2

= (8.99 × 109 N·m2

C2 )
(4.0 × 10−6 C)(4.0 × 10−6 C)

(35N)
= 4.1 × 10−3 m

r′ = 6.4 × 10−2 m = 6.4 cm

This is the distance q3 from q2; we also know that being opposite q1, its direction is

θ′ = 180◦ − 10.3◦ = 169.7◦

from q2. So the displacement of q3 from q2 is given by:

∆x = r′ cos θ′ = (6.45 cm) cos 169.7◦ = −6.35 cm

∆y = r′ sin θ′ = (6.45 cm) sin 169.7◦ = +1.15 cm

Adding these differences to the coordinates of q2 we find:

x3 = x2 + ∆x = −2.0 cm − 6.35 cm = −8.35 cm

y3 = y2 + ∆y = +1.5 cm + 1.15 cm == 2.65 cm

The charge q3 should be placed at the point (−8.35 cm, 2.65 cm).

11. Three identical point charges, each of mass m = 0.100 kg and charge q hang
from three strings, as in Fig. 1.7. If the lengths of the left and right strings are
L = 30.0 cm and angle θ = 45.0◦, determine the value of q. [Ser4 23-10]

Make a free–body diagram in order to understand things! Choose the leftmost mass in
Fig. 1.7. The forces on this mass are shown in Fig. 1.8. Gravity pulls down with a force mg;
the string tension pulls as shown with a force of magnitude T . Both of the other charged
masses exert forces of electrostatic repulsion on this mass. The charge in the middle exerts
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Ffar

Figure 1.8: Forces acting on the leftmost charged mass in Example 11.

a force of magnitude Fmid; the rightmost (far) charge exerts a force of magnitude Ffar. Both
forces are directed to the left.

We can get expressions for Fmid and Ffar using Coulomb’s law. The distance between the
left charge and the middle charge is

r1 = (30.0 cm) sin 45.0◦ = 21.2 cm = 0.212m

and since both charges are +q we have

Fmid = k
q2

(0.212m)2
.

Likewise, the distance between the left charge and the rightmost charge is

r2 = 2(30.0 cm) sin 45.0◦ = 2(0.212m) = 0.424m

so that we have

Ffar = k
q2

(0.424m)2
.

The vertical forces on the mass must sum to zero. This gives us:

T sin 45.0◦ − mg = 0 =⇒ T =
mg

sin 45.0◦
= 1.39N

where we have used the given value of m to evaluate T .
The horizontal forces must also sum to zero, and this gives us:

−Fmid − Ffar + T cos 45.0◦ = 0

Substitute for Fmid and Ffar and get:

−k
q2

(0.212m)2
− k

q2

(0.424m)2
+ T cos 45.0◦ = 0 (1.14)
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Figure 1.9: Charged masses hang from strings, as described in Example 12.

Since we have already found T , the only unknown in this equation is q. The physics part of
the problem is done!

A little rearranging of Eq. 1.14 gives us:

kq2

(

1

(0.212m)2
+

1

(0.424m)2

)

= T cos 45.0◦

The sum in the big parenthesis is equal to 27.8m−2 and with this we can solve for q:

q2 =
T cos 45.0◦

k(27.8m−2)

=
(1.39N) cos 45.0◦

(

8.99 × 109 N·m2

C2

)

(27.8m−2)
= 3.93 × 10−12 C2

And then:
q = 1.98 × 10−6 C = 1.98µC

12. In Fig. 1.9, two tiny conducting balls of identical mass and identical charge q
hang from nonconducting threads of length L. Assume that θ is so small that tan θ
can be replaced by its approximate equal, sin θ. (a) Show that for equilibrium,

x =

(

q2L

2πε0mg

)1/3

,

where x is the separation between the balls. (b) If L = 120 cm, m = 10g and
x = 5.0 cm, what is q? [HRW6 22-15]

(a) We draw a free-body diagram for one of the charge (say, the left one). This is done in
Fig. 1.10. The forces acting on the charged ball are the string tension T , the downward force
of gravity mg and the force of electrostatic repulsion from the other charged ball, Felec. The
direction of this for is to the left because the other ball, having the same charge exerts a
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q

T

mg

Felec

Figure 1.10: The forces acting on one of the charged masses in Example 12.

repulsive force which must point horizontally to the left because of the symmetric position
of the other ball.

We do know the magnitude of the force of electrostatic repulsion; from Coulomb’s law it
is

Felec = k
q2

x2

The ball is in static equilibrium, so the forces on the ball sum to zero. The vertical
components add to zero, which gives us:

T cos θ = mg

and from the horizontal components we get

T sin θ = Felec = k
q2

x2

Divide the second of these equations by the first one and get:

T sin θ

T cos θ
= tan θ =

kq2

mgx2
(1.15)

Now the problem says that the angle θ is so small that we can safely replace tan θ by sin θ
(they are nearly the same for “small” angles). But from the geometry of the problem we can
express sin θ as:

sin θ =
x/2

L
=

x

2L

Using all of this in Eq. 1.15 we get:

x

2L
≈ kq2

mgx2
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Now we can solve for x because a little algebra gives:

x3 =
kq2(2L)

mg
=

2q2L

4πε0mg
=

q2L

2πε0mg
(1.16)

which then gives the answer for x,

x =

(

q2L

2πε0mg

)1/3

(b) Rearranging Eq. 1.16 we find:

q2 =
2πε0mgx3

L

and plugging in the given values (in SI units, of course), we get:

q2 =
2π(8.85 × 10−12 C2

N·m2 )(10 × 10−3 kg)(9.80 m
s2

)

(1.20m)
= 5.68 × 10−16 C2

and then we find q (note the ambiguity in sign!):

q = ±2.4 × 10−8 C .


