
Chapter 5

Waves I: Generalities, Superposition
& Standing Waves

5.1 The Important Stuff

5.1.1 Wave Motion

Wave motion occurs when the mass elements of a medium such as a taut string or the
surface of a liquid make relatively small oscillatory motions but collectively give a pattern
which travels for long distances. This kind of motion also includes the phenomenon of
sound , where the molecules in the air around us make small oscillations but collectively give
a disturbance which can travel the length of a college classroom, all the way to the students
dozing in the back. We can even view the up–and–down motion of inebriated spectators of
sports events as wave motion, since their small individual motions give rise to a disturbance
which travels around a stadium.

The mathematics of wave motion also has application to electromagnetic waves (including
visible light), though the physical origin of those traveling disturbances is quite different from
the mechanical waves we study in this chapter; so we will hold off on studying electromagnetic
waves until we study electricity and magnetism in the second semester of our physics course.

Obviously, wave motion is of great importance in physics and engineering.

5.1.2 Types of Waves

In some types of wave motion the motion of the elements of the medium is (for the most
part) perpendicular to the motion of the traveling disturbance. This is true for waves on
a string and for the people–wave which travels around a stadium. Such a wave is called a
transverse wave. This type of wave is the easiest to visualize.

For other waves the motion of the elements of the medium is parallel to the motion of
the disturbance. This type of wave can be seen when we stretch a spring and wiggle its end
parallel to its length. We then see traveling regions where the spring is more compressed and
more stretched; the elements of the spring have a small back–and–forth motion. A sound
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wave travels in the same way; here, the air molecules have a small back-and-forth motion
generating regions where the air has greater or smaller compression.

A wave which travels due to local motions along the direction of propagation is called a
longitudinal wave.

5.1.3 Mathematical Description of a Wave; Wavelength, Frequency

and Wave Speed

In our mathematical treatment of wave phenomena, we will mostly deal with one-dimensional
traveling waves. The coordinate along which the disturbance travels will be x; at each value
of x the medium will be “displaced” in some way, and that displacement will be described
by the variable y. Then y will depend upon x (the place where we see the displacement of
the medium) and also the time t at which we see the displacement. In general, y = f(x, t).

If we specialize to the case where the shape of the wave does not change with time, but
rather travels along the +x axis with some velocity v, then the wave will be a function only

of the combination x − vt:

y = f(x − vt) (Velocity v in +x direction) .

Of course, from this it follows that a wave travelling in the other direction is

y = f(x + vt) (Velocity v in −x direction) .

For reasons which are basically mathematical, it is important to study a particular trav-
eling wave, one which has a sinusoidal shape as a function of x. Such a wave is given by

y(x, t) = ym sin(kx ∓ ωt) (5.1)

In this equation, the − sign is chosen for a wave traveling in the +x direction; + is chosen
for a wave traveling in the −x direction.

This wave form represents an (infinite) wave train rather than a pulse. In this formula,
k is called the angular wave number and it has units of m−1. ω is called the angular
frequency for the wave (as you would expect!) and it has units of s−1.

The harmonic wave of Eq. 5.1 is periodic in both space and time. The wavelength λ of
the wave is the distance between repetitions of the (sinusoidal) wave shape when we “freeze”
the wave in time. One can show that it is related to k by:

k =
2π

λ
. (5.2)

The period T of the wave is the time between repetitions of the motion of any one
element of the medium. One can show that it is related to the angular frequency by:

ω =
2π

T
. (5.3)
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As in our study of oscillations, the frequency of the wave has the same relation to ω and
T :

f =
ω

2π
=

1

T

One can show that the speed of such a wave (that is, the rate at which its crests travel
along the x axis) is

v =
ω

k
= λf (5.4)

One must be careful not to confuse the speed of the wave with the speeds of the individual
elements of the medium through which the wave passes. Each mass point of the medium
moves like a harmonic oscillator whose amplitude and frequency is the same as that of the
wave; the maximum speed of each element is vmax = ymω and the maximum acceleration of
each element is ymω2.

5.1.4 Waves on a Stretched String

One of the simplest examples of a transverse wave is that of waves travelling on a stretched
string. One can show that for a string under a tension τ whose mass per unit length is given
by µ, the speed of waves is

v =

√

τ

µ
(5.5)

An important feature of waves is that they transmit energy . The average power is
the rate at which mechanical energy passes any point of the x axis. One can show that for
harmonic waves on a string it is given by

P = 1
2
µvω2y2

m (5.6)

where µ is the linear mass density of the string, v is the speed of string waves and ω is the
angular frequency of the harmonic wave. We note here that P is proportional to the squares

of ω and ym.

5.1.5 The Principle of Superposition

A simple (but non-obvious!) property of all of the waves in nature that we are likely to study
is that they add together . More precisely, if one physical disturbance of a medium generates
the wave y1(x, t) and another disturbance generates the wave y2(x, t) then if both effects act
at the same time, the resultant wave will be

yTot(x, t) = y1(x, t) + y2(x, t) . (5.7)

5.1.6 Interference of Waves

In this and the next section we give the results for the superposition of two harmonic waves
which differ in only one respect; this allows us to understand the importance that the parts
of Eq. 5.1 play in the combining of waves.
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First we take two waves with the same speed, frequency, amplitude and direction of
motion but which differ by a phase constant. We will combine the two waves

y1 = ym sin(kx − ωt) and y2 = ym sin(kx − ωt + φ) (5.8)

To arrive at a useful form for the sum of these two waves one can use the trig identity

sinα + sin β = 2 sin 1
2
(α + β) cos 1

2
(α − β) .

With this, we can show that the resultant wave y′(x, t) is:

y′(x, t) = y1(x, t) + y2(x, t)

=
[

2ym cos
(

1
2
φ
)]

sin(kx − ωt + 1
2
φ) (5.9)

The resultant wave has a new phase but more importantly it has a new amplitude which
depends on ym and φ:

y′
m = 2ym cos 1

2
φ . (5.10)

When φ = 0, the new amplitude is 2ym; the waves are said to be completely in phase
and that the addition is fully constructive. A maximum from wave y1 coincides with a
maximum from wave y2 and a “bigger” wave is the result.

When φ = π then the new amplitude is zero and the waves are said to be completely
out of phase and that the addition is fully destructive. Here a maximum from wave y1

coincides with a minimum of wave y2 and the result is complete cancellation.

5.1.7 Standing Waves

Next we consider the result of the addition of two harmonic waves which have the same
speed, frequency and amplitude but for which the directions of propagation (either +x or
−x are different. (In this case the phase constants for each wave won’t matter.) We will
add:

y1(x, t) = ym sin(kx − ωt) and y2(x, t) = ym sin(kx + ωt) (5.11)

One again we can use the trig identity for adding two sines to show that the sum y′
m(x, t) is:

y′
m(x, t) = y1(x, t) + y2(x, t)

= [2ym cos ωt] sin kx (5.12)

The resultant wave in Eq. 5.12 is a very interesting function of x and t, though it is not

a travelling wave since it is not of the form f(kx ∓ ωt). It is a sinusoidal function of the
coordinate x, multiplied by a modulating factor cos(ωt). Since the same spatial pattern of
oscillations stays in one place, a wave of the form of Eq. 5.12 is called a standing wave.

For the wave given in Eq. 5.12 there are points where there is no displacement, i.e. those
where sin(kx) = 0 (so that x = nπ

k
with n equal to an integer). These points are the nodes

of the standing wave pattern.
There are also points for which the displacement is a maximum, namely those for which

sin(kx) = ±1 (so that x = (2n+1)π
2k

with n equal to an integer). These points are called the
antinodes of the standing wave pattern. Consecutive nodes and antinodes are separated by
λ/2, where λ is the wavelength of the original waves that went into making up the standing
wave. A node and the closest antinode are separated by λ/4.
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5.1.8 Standing Waves on Strings Under Tension

We can observe standing wave patterns in the lab if we clamp the ends of a piece of string
(putting it under some tension) and pluck it, or possibly give one end of the string a small
jiggly motion of a certain frequency. In the first case it is mostly the fundamental mode
(n = 1) of vibration which is set up on the string, whereas in the second case we can
selectively make any mode oscillate on the string.

The oscillation modes of the string are those where the string oscillates with nodes at
either end and a special pattern of nodes and antinodes in between. Such a pattern exists
only when the string vibrates with certain resonant frequencies. For these modes, the
length of the string L is an integer number of half–wavelengths:

L = n
λ

2
n = 1, 2, 3, . . .

which leads to the formula for the resonant frequencies:

fn = n
v

2L
n = 1, 2, 3, . . . (5.13)

where v is the speed of waves on the string and fn is the resonant frequency of the nth mode.

5.2 Worked Examples

5.2.1 Wavelength, Frequency and Speed

1. A wave has speed 240 m
s

and a wavelength of 3.2m. What are the (a) frequency
and (b) period of the wave? [HRW5 17-1]

(a) From Eq. 5.4 we have

v = λf =⇒ f =
v

λ
.

Plug in the given v and λ:

f =
(240 m

s
)

(3.2m)
= 75 s−1 = 75Hz

(b) Then, from T = 1/f , we get the period of the wave:

T =
1

f
=

1

75 s−1
= 1.3 × 10−2 s = 13ms
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2. Write the equation for a (harmonic) wave travelling in the negative direction
along the x axis and having an amplitude of 0.010m, a frequency of 550Hz, and a
speed of 330 m

s
. [HRW5 17-5]

From Eq. 5.4 we get the wavelength for this wave:

λ =
v

f
=

(330 m
s
)

(550 s−1)
= 0.600m

and we get the angular wave number k and the angular frequency ω:

k =
2π

λ
=

2π

(0.600m)
= 10.5m−1

ω = 2πf = 2π(550 s−1) = 3.46 × 103 s−1

This gives us all the quantities we need to put into the harmonic wave of Eq. 5.1. Using
the given amplitude ym = 0.010m and choosing the proper sign for a wave traveling in the
−x direction, we get:

y(x, t) = (0.010m) sin
(

[10.5m−1]x + [3.46 × 103 s−1]t
)

5.2.2 Waves on a Stretched String

3. The speed of a transverse wave on a string is 170 m
s

when the string tension
is 120N. To what value must the tension be changed to raise the wave speed to
180 m

s
? [HRW5 17-19]

Knowing the speed of waves on a string for any particular tension allows us to find the
mass density µ of the string. Use:

v =

√

F

µ
=⇒ v2 =

F

µ
=⇒ µ =

F

v2

Plug in the numbers for the first case:

µ =
(120N)

(170 m
s
)2

= 4.15 × 10−3 kg
m

Now for some new tension the speed of the waves on the string is 180 m
s
. It’s the same

string so the mass density is still 4.15 × 10−3 kg
m

. Then find the new tension F :

F = µv2 = (4.15 × 10−3 kg
m

)(180 m
s
)2 = 135N
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4. A string along which waves can travel is 2.70m long and has a mass of 260 g.
The tension is the string is 36.0N. What must be the frequency of travelling
waves of amplitude 7.70mm for the average power to be 85.0W ? [HRW6 17-24]

A couple properties of this string which we can calculate: We can find its linear mass
density:

µ =
M

L
=

(260 × 10−3 kg)

(2.70m)
= 9.63 × 10−2 kg

m

and also the speed of waves on the string:

v =

√

τ

µ
=

√

√

√

√

(36.0N)

(9.63 × 10−2 kg
m

)
= 19.3 m

s

Using Eq. 5.6 to relate the rate of energy transmission P to the other quantities, the
angular frequency of the travelling wave is

ω2 =
2P

µvy2
m

=
2(85.0W)

(9.63 × 10−2 kg
m

)(19.3 m
s
)(7.70 × 10−3 m)

= 1.53 × 106/ s2

so that
ω = 1.24 × 103/ s

and then

f =
ω

2π
=

(1.24 × 103/ s)

2π
= 198Hz

Waves of the given amplitude must have frequency 198Hz.

5.2.3 Superposition; Interference of Waves

5. Two identical travelling waves, moving in the same direction, are out of phase
by π

2
rad. What is the amplitude of the resultant wave in terms of the common

amplitude ym of the two combining waves? [HRW5 17-36]

Though the answer is given quite simply by Eq. 5.10 with φ = π

2
, we’ll work out all the

steps here.
We will make specific choices for the mathematical forms for the two waves, but one can

show that the answer doesn’t depend on the choice.
Suppose the first wave has wave number k and angular frequency ω and travels in the

+x direction. Then one choice for this wave is

y1(x, t) = ym sin(kx − ωt) (5.14)
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Now if the second wave is “identical” it must have the same amplitude (ym). It will also
be a sine wave whose (x, t) dependence also has the form kx− ωt. But the argument of the
sin function — that is, the “phase” — differs from that of y1 by π

2
. The following choice:

y2(x, t) = ym sin(kx − ωt− π

2
) (5.15)

will put wave y2 ahead of y1 in space by a quarter wave (since at any given time t we need
to increase the term kx in y2 by π

2
in order to give the same answer as y1). But again, the

opposite choice of sign for the phase difference will give the same result.
When waves y1 and y2 are travelling on the same string, the resultant wave is the sum

of 5.14 and 5.15,

yTot(x, t) = y1(x, t) + y2(x, t)

= ym sin(kx − ωt) + ym sin(kx − ωt − π

2
) (5.16)

Here, the common factor ym can taken from both terms and for the rest we can use the trig
identity

sinα + sin β = 2 sin
[

1
2
(α + β)

]

cos
[

1
2
(α − β)

]

where we intend to use

α = kx − ωt and β = kx − ωt − π

2

Putting all of this into Eq. 5.16 gives

yTot(x, t) = 2ym sin
[

1
2
(2kx − 2ωt − π

2
)
]

cos
[

1
2
(π

2
)
]

= 2ym sin
[

1
2
(kx − ωt − π

4
)
]

cos
[

π

4

]

=
√

2ym sin
[

1
2
(kx − ωt − π

4
)
]

where in the last step we have used the well–known fact that cos
(

π

4

)

= 1√
2
.

Our final result for yTot(x, t) is a sinusoidal function of x and t which has amplitude

yTot,m =
√

2ym ≈ 1.41ym ,

that is, it is
√

2 times the amplitude of either of the original waves.

5.2.4 Standing Waves on a Stretched String

6. A nylon guitar string has a linear density of 7.2 g/m and is under a tension of
150N. The fixed supports are 90 cm apart. The string is oscillating in the standing
wave pattern shown in Fig. 5.1. Calculate the (a) speed, (b) wavelength, and (c)
frequency of the travelling waves whose superposition gives this standing wave.
[HRW6 17-33]
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Figure 5.1: Standing wave on pattern on string of Example 6

(a) We have the linear mass density µ = 7.2 × 10−3 kg
m

and the tension τ = 150N for the
string. From Eq. 5.5, the speed of waves on the string is

v =

√

τ

µ
=

√

√

√

√

(150N)

(7.2 × 10−3 kg
m

)
= 140 m

s

(b) For the pattern shown in Fig. 5.1, the length of the sring is equal to 3 half-wavelengths:
L = 3(λ

2
). So the wavelength (of the travelling waves giving the pattern) is:

λ = 2
3
L = 2

3
(0.90m) = 0.60m = 60 cm

(c) For the frequency of the waves, use λf = v. Then:

f =
v

λ
=

(140 m
s
)

(0.60m)
= 240Hz

7. A string that is stretched between fixed supports separated by 75.0 cm has
resonant frequencies of 420Hz and 315Hz with no intermediate frequencies. What
are (a) the lowest resonant frequency and (b) the wave speed? [HRW6 17-39]

(a) The problem gives two successive frequencies, but we don’t (yet) know what values of
n in Eq. 5.13 they correspond to. What does Eq. 5.13 tell us about the difference between
two successive resonant frequencies? The difference between the frequencies corresponding
to N + 1 and n is:

fn+1 − fn = (n + 1)
v

2L
− n

v

2L
=

v

2L

so that the difference does not depend on n, and it gives us v

2L
. Using our frequencies, we

get:

fn+1 − fn = 420Hz − 315Hz = 105Hz =
v

2L

and since we have the value of L, we find:

v = 2L(105Hz) = 2(0.750m)(105Hz) = 158 m
s

which is the answer to part (b)! Anyway, the lowest frequency has n = 1; with this, f1 = v

2L

which we already have found to be equal to 105Hz. So the fundamental frequency of the
string is

f1 = 105Hz
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Figure 5.2: Standing wave on string as described in Example 8

(b) Answer in part (a): v = 158 m
s
.

8. In an experiment on standing waves, a string 90 cm long is attached to the
prong of an electrically driven tuning fork that oscillates perpendicular to the
length of the string at a frequency of 60Hz. The mass of the string is 0.044 kg.
What tension must the string be under (weights are attached to the other end)
if it is to oscillate in four loops? [HRW6 17-44]

The problem is telling us that the standing wave on the string has the pattern (“four
loops”) shown in Fig. 5.2. Thus the full length of the string is four half-wavelengths, so that:

L = 4

(

λ

2

)

=⇒ λ =
L

2
=

(0.90m

2
= 0.45m

The frequency of the wave is f = 60Hz so that the speed of wave on this string is

v = λf = (0.45m)(60Hz) = 27 m
s

The linear mass density of the string is

µ =
(0.044 kg)

(0.90m)
= 4.9 × 10−2 kg

m

So using Eq. 5.5 for the speed of waves on a string, we get:

v2 =
τ

µ
=⇒ τ = µv2 = (4.9 × 10−2 kg

m
)(27 m

s
)2 = 36N .

The tension of the string is 36N.


