
Chapter 6

Work, Kinetic Energy and Potential
Energy

6.1 The Important Stuff

6.1.1 Kinetic Energy

For an object with mass m and speed v, the kinetic energy is defined as

K = 1
2
mv2 (6.1)

Kinetic energy is a scalar (it has magnitude but no direction); it is always a positive
number; and it has SI units of kg · m2/ s2. This new combination of the basic SI units is
known as the joule:

1 joule = 1J = 1 kg·m2

s2
(6.2)

As we will see, the joule is also the unit of work W and potential energy U . Other energy
units often seen are:

1 erg = 1 g·cm2

s2
= 10−7 J 1 eV = 1.60 × 10−19 J

6.1.2 Work

When an object moves while a force is being exerted on it, then work is being done on the
object by the force.

If an object moves through a displacement d while a constant force F is acting on it, the
force does an amount of work equal to

W = F · d = Fd cos φ (6.3)

where φ is the angle between d and F.
Work is also a scalar and has units of 1N · m. But we can see that this is the same as

the joule, defined in Eq. 6.2.
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Work can be negative; this happens when the angle between force and displacement is
larger than 90◦. It can also be zero; this happens if φ = 90◦. To do work, the force must
have a component along (or opposite to) the direction of the motion.

If several different (constant) forces act on a mass while it moves though a displacement
d, then we can talk about the net work done by the forces,

Wnet = F1 · d + F1 · d + F1 · d + . . . (6.4)

=
(

∑

F
)

· d (6.5)

= Fnet · d (6.6)

If the force which acts on the object is not constant while the object moves then we must
perform an integral (a sum) to find the work done.

Suppose the object moves along a straight line (say, along the x axis, from xi to xf ) while
a force whose x component is Fx(x) acts on it. (That is, we know the force Fx as a function
of x.) Then the work done is

W =
∫ xf

xi

Fx(x) dx (6.7)

Finally, we can give the most general expression for the work done by a force. If an object
moves from ri = xii+ yij+ zik to rf = xf i+ yfj+ zfk while a force F(r) acts on it the work
done is:

W =
∫ xf

xi

Fx(r) dx +
∫ yf

yi

Fy(r) dy +
∫ zf

zi

Fz(r) dz (6.8)

where the integrals are calculated along the path of the object’s motion. This expression
can be abbreviated as

W =
∫

rf

ri

F · dr . (6.9)

This is rather abstract! But most of the problems where we need to calculate the work done
by a force will just involve Eqs. 6.3 or 6.7

We’re familiar with the force of gravity; gravity does work on objects which move ver-
tically. One can show that if the height of an object has changed by an amount ∆y then
gravity has done an amount of work equal to

Wgrav = −mg∆y (6.10)

regardless of the horizontal displacement. Note the minus sign here; if the object increases
in height it has moved oppositely to the force of gravity.

6.1.3 Spring Force

The most famous example of a force whose value depends on position is the spring force,
which describes the force exerted on an object by the end of an ideal spring. An ideal
spring will pull inward on the object attached to its end with a force proportional to the
amount by which it is stretched; it will push outward on the object attached to its with a
force proportional to amount by which it is compressed.
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If we describe the motion of the end of the spring with the coordinate x and put the
origin of the x axis at the place where the spring exerts no force (the equilibrium position)
then the spring force is given by

Fx = −kx (6.11)

Here k is force constant, a number which is different for each ideal spring and is a measure
of its “stiffness”. It has units of N/m = kg/ s2. This equation is usually referred to as
Hooke’s law. It gives a decent description of the behavior of real springs, just as long as
they can oscillate about their equilibrium positions and they are not stretched by too much!

When we calculate the work done by a spring on the object attached to its end as the
object moves from xi to xf we get:

Wspring = 1
2
kx2

i −
1
2
kx2

f (6.12)

6.1.4 The Work–Kinetic Energy Theorem

One can show that as a particle moves from point ri to rf , the change in kinetic energy of
the object is equal to the net work done on it:

∆K = Kf − Ki = Wnet (6.13)

6.1.5 Power

In certain applications we are interested in the rate at which work is done by a force. If an
amount of work W is done in a time ∆t, then we say that the average power P due to the
force is

P =
W

∆t
(6.14)

In the limit in which both W and ∆t are very small then we have the instantaneous power
P , written as:

P =
dW

dt
(6.15)

The unit of power is the watt, defined by:

1watt = 1W = 1 J
s

= 1 kg·m2

s3
(6.16)

The watt is related to a quaint old unit of power called the horsepower:

1 horsepower = 1hp = 550 ft·lb
s

= 746W

One can show that if a force F acts on a particle moving with velocity v then the
instantaneous rate at which work is being done on the particle is

P = F · v = Fv cos φ (6.17)

where φ is the angle between the directions of F and v.
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6.1.6 Conservative Forces

The work done on an object by the force of gravity does not depend on the path taken to
get from one position to another. The same is true for the spring force. In both cases we
just need to know the initial and final coordinates to be able to find W , the work done by
that force.

This situation also occurs with the general law for the force of gravity (Eq. 5.4.) as well
as with the electrical force which we learn about in the second semester!

This is a different situation from the friction forces studied in Chapter 5. Friction forces
do work on moving masses, but to figure out how much work, we need to know how the
mass got from one place to another.

If the net work done by a force does not depend on the path taken between two points,
we say that the force is a conservative force. For such forces it is also true that the net
work done on a particle moving on around any closed path is zero.

6.1.7 Potential Energy

For a conservative force it is possible to find a function of position called the potential
energy, which we will write as U(r), from which we can find the work done by the force.

Suppose a particle moves from ri to rf . Then the work done on the particle by a conser-
vative force is related to the corresponding potential energy function by:

Wri→rf
= −∆U = U(ri) − U(rf ) (6.18)

The potential energy U(r) also has units of joules in the SI system.

When our physics problems involve forces for which we can have a potential energy
function, we usually think about the change in potential energy of the objects rather than the
work done by these forces. However for non–conservative forces, we must directly calculate
their work (or else deduce it from the data given in our problems).

We have encountered two conservative forces so far in our study. The simplest is the
force of gravity near the surface of the earth, namely −mgj for a mass m, where the y axis
points upward. For this force we can show that the potential energy function is

Ugrav = mgy (6.19)

In using this equation, it is arbitrary where we put the origin of the y axis (i.e. what we call
“zero height”). But once we make the choice for the origin we must stick with it.

The other conservative force is the spring force. A spring of force constant k which is
extended from its equilibrium position by an amount x has a potential energy given by

Uspring = 1
2
kx2 (6.20)
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6.1.8 Conservation of Mechanical Energy

If we separate the forces in the world into conservative and non-conservative forces, then the
work–kinetic energy theorem says

W = Wcons + Wnon−cons = ∆K

But from Eq. 6.18, the work done by conservative forces can be written as a change in
potential energy as:

Wcons = −∆U

where U is the sum of all types of potential energy. With this replacement, we find:

−∆U + Wnon−cons = ∆K

Rearranging this gives the general theorem of the Conservation of Mechanical Energy:

∆K + ∆U = Wnon−cons (6.21)

We define the total energy E of the system as the sum of the kinetic and potential
energies of all the objects:

E = K + U (6.22)

Then Eq. 6.21 can be written

∆E = ∆K + ∆U = Wnon−cons (6.23)

In words, this equation says that the total mechanical energy changes by the amount of work
done by the non–conservative forces.

Many of our physics problems are about situations where all the forces acting on the
moving objects are conservative; loosely speaking, this means that there is no friction, or
else there is negligible friction.

If so, then the work done by non–conservative forces is zero, and Eq. 6.23 takes on a
simpler form:

∆E = ∆K + ∆U = 0 (6.24)

We can write this equation as:

Ki + Ui = Kf + Uf or Ei = Ef

In other words, for those cases where we can ignore friction–type forces, if we add up all
the kinds of energy for the particle’s initial position, it is equal to the sum of all the kinds
of energy for the particle’s final position. In such a case, the amount of mechanical energy
stays the same. . . it is conserved.

Energy conservation is useful in problems where we only need to know about positions
or speeds but not time for the motion.
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6.1.9 Work Done by Non–Conservative Forces

When the system does have friction forces then we must go back to Eq. 6.23. The change in
total mechanical energy equals the work done by the non–conservative forces:

∆E = Ef − Ei = Wnon−cons

(In the case of sliding friction with the rule fk = µkN it is possible to compute the work
done by the non–conservative force.)

6.1.10 Relationship Between Conservative Forces and Potential

Energy (Optional?)

Eqs. 6.9 (the general expression for work W ) and 6.18 give us a relation between the force F
on a particle (as a function of position, r) and the change in potential energy as the particle
moves from ri to rf :

∫

rf

ri

F · dr = −∆U (6.25)

Very loosely speaking, potential energy is the (negative) of the integral of F(r). Eq. 6.25
can be rewritten to show that (loosely speaking!) the force F(r) is the (minus) derivative of
U(r). More precisely, the components of F can be gotten by taking partial derivatives of U
with respect to the Cartesian coordinates:

Fx = −
∂U

∂x
Fy = −

∂U

∂y
Fz = −

∂U

∂z
(6.26)

In case you haven’t come across partial derivatives in your mathematics education yet:
They come up when we have functions of several variables (like a function of x, y and z); if
we are taking a partial derivative with respect to x, we treat y and z as constants.

As you may have already learned, the three parts of Eq. 6.26 can be compactly written
as

F = −∇U

which can be expressed in words as “F is the negative gradient of U”.

6.1.11 Other Kinds of Energy

This chapter covers the mechanical energy of particles; later, we consider extended objects
which can rotate, and they will also have rotational kinetic energy . Real objects also have
temperature so that they have thermal energy . When we take into account all types of
energy we find that total energy is completely conserved. . . we never lose any! But here we
are counting only the mechanical energy and if (in real objects!) friction is present some of
it can be lost to become thermal energy.



6.2. WORKED EXAMPLES 133

6.2 Worked Examples

6.2.1 Kinetic Energy

1. If a Saturn V rocket with an Apollo spacecraft attached has a combined mass
of 2.9 × 105 kg and is to reach a speed of 11.2 km

s
, how much kinetic energy will it

then have? [HRW5 7-1]

(Convert some units first.) The speed of the rocket will be

v = (11.2 km
s

)

(

103 m

1km

)

= 1.12 × 104 m
s

.

We know its mass: m = 2.9 × 105 kg. Using the definition of kinetic energy, we have

K = 1
2
mv2 = 1

2
(2.9 × 105 kg)(1.12 × 104 m

s
)2 = 1.8 × 1013 J

The rocket will have 1.8 × 1013 J of kinetic energy.

2. If an electron (mass m = 9.11 × 10−31 kg) in copper near the lowest possible
temperature has a kinetic energy of 6.7×10−19 J, what is the speed of the electron?
[HRW5 7-2]

Use the definition of kinetic energy, K = 1
2
mv2 and the given values of K and m, and

solve for v. We find:

v2 =
2K

m
=

2(6.7 × 10−19 J)

(9.11 × 10−31 kg)
= 1.47 × 1012 m2

s2

which gives:
v = 1.21 × 106 m

s

The speed of the electron is 1.21 × 106 m
s
.

6.2.2 Work

3. A floating ice block is pushed through a displacement of d = (15m)i − (12m)j
along a straight embankment by rushing water, which exerts a force F = (210N)i−
(150N)j on the block. How much work does the force do on the block during the
displacement? [HRW5 7-11]

Here we have the simple case of a straight–line displacement d and a constant force F.
Then the work done by the force is W = F · d. We are given all the components, so we can
compute the dot product using the components of F and d:

W = F · d = Fxdx + Fydy = (210N)((15m) + (−150N)(−12m) = 4950 J
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Figure 6.1: Force Fx, which depends on position x; see Example 4.

The force does 4950 J of work.

4. A particle is subject to a force Fx that varies with position as in Fig. 6.1. Find
the work done by the force on the body as it moves (a) from x = 0 to x = 5.0m,
(b) from x = 5.0m to x = 10m and (c) from x = 10m to x = 15m. (d) What is the
total work done by the force over the distance x = 0 to x = 15m? [Ser4 7-23]

(a) Here the force is not the same all through the object’s motion, so we can’t use the
simple formula W = Fxx. We must use the more general expression for the work done when
a particle moves along a straight line,

W =
∫ xf

xi

Fx dx .

Of course, this is just the “area under the curve” of Fx vs. x from xi to xf .
In part (a) we want this “area” evaluated from x = 0 to x = 5.0m. From the figure, we

see that this is just half of a rectangle of base 5.0m and height 3.0N. So the work done is

W = 1
2
(3.0N)(5.0m) = 7.5 J .

(Of course, when we evaluate the “area”, we just keep the units which go along with the
base and the height; here they were meters and newtons, the product of which is a joule.)

So the work done by the force for this displacement is 7.5 J.

(b) The region under the curve from x = 5.0m to x = 10.0m is a full rectangle of base
5.0m and height 3.0N. The work done for this movement of the particle is

W = (3.0N)(5.0m) = 15. J

(c) For the movement from x = 10.0m to x = 15.0m the region under the curve is a half

rectangle of base 5.0m and height 3.0N. The work done is

W = 1
2
(3.0N)(5.0m) = 7.5 J .
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(d) The total work done over the distance x = 0 to x = 15.0m is the sum of the three
separate “areas”,

Wtotal = 7.5 J + 15. J + 7.5 J = 30. J

5. What work is done by a force F = (2x N)i+(3N)j, with x in meters, that moves
a particle from a position ri = (2m)i + (3m)j to a position rf = −(4m)i − (3m)j ?
[HRW5 7-31]

We use the general definition of work (for a two–dimensional problem),

W =
∫ xf

xi

Fx(r) dx +
∫ yf

yi

Fy(r) dy

With Fx = 2x and Fy = 3 [we mean that F in newtons when x is in meters; work W will
come out with units of joules !], we find:

W =
∫

−4 m

2 m
2x dx +

∫

−3 m

3 m
3dy

= x2
∣

∣

∣

−4 m

2m
+ 3x

∣

∣

∣

−3 m

3 m

= [(16) − (4)] J + [(−9)− (9)] J

= −6 J

6.2.3 Spring Force

6. An archer pulls her bow string back 0.400m by exerting a force that increases
from zero to 230N. (a) What is the equivalent spring constant of the bow? (b)
How much work is done in pulling the bow? [Ser4 7-25]

(a) While a bow string is not literally spring, it may behave like one in that it exerts a force
on the thing attached to it (like a hand!) that is proportional to the distance of pull from
the equilibrium position. The correspondence is illustrated in Fig. 6.2.

We are told that when the string has been pulled back by 0.400m, the string exerts a
restoring force of 230N. The magnitude of the string’s force is equal to the force constant k
times the magnitude of the displacement; this gives us:

|Fstring| = 230N = k(0.400m)

Solving for k,

k =
(230N)

(0.400m)
= 575 N

m

The (equivalent) spring constant of the bow is 575 N
m

.
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x

Figure 6.2: The force of a bow string (a) on the object pulling it back can be modelled as as ideal spring
(b) exerting a restoring force on the mass attached to its end.

(b) Still treating the bow string as if it were an ideal spring, we note that in pulling the
string from a displacement of x = 0 to x = 0.400m the string does as amount of work on

the hand given by Eq. 6.12:

Wstring = 1
2
kx2

i −
1
2
kx2

f

= 0 − 1
2
(575 N

m
)(0.400m)2

= −46.0 J

Is this answer to the question? Not quite. . . we were really asked for the work done by the

hand on the bow string. But at all times during the pulling, the hand exerted an equal and
opposite force on the string. The force had the opposite direction, so the work that it did
has the opposite sign. The work done (by the hand) in pulling the bow is +46.0 J.

6.2.4 The Work–Kinetic Energy Theorem

7. A 40 kg box initially at rest is pushed 5.0m along a rough horizontal floor with
a constant applied horizontal force of 130N. If the coefficient of friction between
the box and floor is 0.30, find (a) the work done by the applied force, (b) the
energy lost due to friction, (c) the change in kinetic energy of the box, and (d)
the final speed of the box. [Ser4 7-37]

(a) The motion of the box and the forces which do work on it are shown in Fig. 6.3(a). The
(constant) applied force points in the same direction as the displacement. Our formula for
the work done by a constant force gives

Wapp = Fd cos φ = (130N)(5.0m) cos 0◦ = 6.5 × 102 J

The applied force does 6.5 × 102 J of work.

(b) Fig. 6.3(b) shows all the forces acting on the box.
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ffric
Fapp

d

Fapp
ffric

mg

N

(a) (b)

Figure 6.3: (a) Applied force and friction force both do work on the box. (b) Diagram showing all the
forces acting on the box.

The vertical forces acting on the box are gravity (mg, downward) and the floor’s normal
force (N , upward). It follows that N = mg and so the magnitude of the friction force is

ffric = µN = µmg = (0.30)(40 kg)(9.80 m
s2

) = 1.2 × 102 N

The friction force is directed opposite the direction of motion (φ = 180◦) and so the work
that it does is

Wfric = Fd cos φ

= ffric d cos 180◦ = (1.2 × 102 N)(5.0m)(−1) = −5.9 × 102 J

or we might say that 5.9 × 102 J is lost to friction.

(c) Since the normal force and gravity do no work on the box as it moves, the net work done
is

Wnet = Wapp + Wfric = 6.5 × 102 J − 5.9 × 102 J = 62J .

By the work–Kinetic Energy Theorem, this is equal to the change in kinetic energy of the
box:

∆K = Kf − Ki = Wnet = 62J .

(d) Here, the initial kinetic energy Ki was zero because the box was initially at rest. So we
have Kf = 62J. From the definition of kinetic energy, K = 1

2
mv2, we get the final speed of

the box:

v2
f =

2Kf

m
=

2(62 J)

(40 kg)
= 3.1 m2

s2

so that
vf = 1.8 m

s

8. A crate of mass 10.0 kg is pulled up a rough incline with an initial speed of
1.50 m

s
. The pulling force is 100N parallel to the incline, which makes an angle of

20.0◦ with the horizontal. The coefficient of kinetic friction is 0.400, and the crate
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Figure 6.4: (a) Block moves 5.00 m up plane while acted upon by gravity, friction and an applied force.
(b) Directions of the displacement and the force of gravity.

is pulled 5.00m. (a) How much work is done by gravity? (b) How much energy
is lost due to friction? (c) How much work is done by the 100N force? (d) What
is the change in kinetic energy of the crate? (e) What is the speed of the crate
after being pulled 5.00m? [Ser4 7-47]

(a) We can calculate the work done by gravity in two ways. First, we can use the definition:
W = F · d. The magnitude of the gravity force is

Fgrav = mg = (10.0 kg(9.80 m
s2

) = 98.0N

and the displacement has magnitude 5.00m. We see from geometry (see Fig. 6.4(b)) that the
angle between the force and displacement vectors is 110◦. Then the work done by gravity is

Wgrav = Fd cosφ = (98.0N)(5.00m) cos 110◦ = −168 J .

Another way to work the problem is to plug the right values into Eq. 6.10. From simple
geometry we see that the change in height of the crate was

∆y = (5.00m) sin 20◦ = +1.71m

Then the work done by gravity was

Wgrav = −mg∆y = −(10.0 kg)(9.80 m
s2

)(1.71m) = −168 J

(b) To find the work done by friction, we need to know the force of friction. The forces
on the block are shown in Fig. 6.5(a). As we have seen before, the normal force between
the slope and the block is mg cos θ (with θ = 20◦) so as to cancel the normal component of
the force of gravity. Then the force of kinetic friction on the block points down the slope
(opposite the motion) and has magnitude

fk = µkN = µmg cos θ

= (0.400)(10.0 kg)(9.80 m
s2

) cos 20◦ = 36.8N
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20o
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Figure 6.5: (a) Gravity and friction forces which act on the block. (b) The applied force of 100 N is along
the direction of the motion.

This force points exactly opposite the direction of the displacement d, so the work done by
friction is

Wfric = fkd cos 180◦ = (36.8N)(5.00m)(−1) = −184 J

(c) The 100N applied force pulls in the direction up the slope, which is along the direction
of the displacement d. So the work that is does is

Wappl = Fd cos 0◦ = (100N)(5.00m)(1) = 500. J

(d) We have now found the work done by each of the forces acting on the crate as it moved:
Gravity, friction and the applied force. (We should note the the normal force of the surface
also acted on the crate, but being perpendicular to the motion, it did no work.) The net
work done was:

Wnet = Wgrav + Wfric + Wappl

= −168 J − 184 J + 500. J = 148 J

From the work–energy theorem, this is equal to the change in kinetic energy of the box:
∆K = Wnet = 148J.

(e) The initial kinetic energy of the crate was

Ki = 1
2
(10.0 kg)(1.50 m

s
)2 = 11.2 J

If the final speed of the crate is v, then the change in kinetic energy was:

∆K = Kf −Ki = 1
2
mv2 − 11.2 J .

Using our answer from part (d), we get:

∆K = 1
2
mv2 − 11.2 J = 148 J =⇒ v2 =

2(159 J)

m

So then:

v2 =
2(159 J)

(10.0 kg)
= 31.8 m2

s2
=⇒ v = 5.64 m

s
.

The final speed of the crate is 5.64 m
s
.
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W= 700 N

10.0 m

Figure 6.6: Marine climbs rope in Example 9. You don’t like my drawing? Tell it to the Marines!

6.2.5 Power

9. A 700N marine in basic training climbs a 10.0m vertical rope at a constant
speed of 8.00 s. What is his power output? [Ser4 7-53]

Marine is shown in Fig. 6.6. The speed of the marine up the rope is

v =
d

t
=

10.0m

8.00 s
= 1.25 m

s

The forces acting on the marine are gravity (700N, downward) and the force of the rope
which must be 700N upward since he moves at constant velocity. Since he moves in the
same direction as the rope’s force, the rope does work on the marine at a rate equal to

P =
dW

dt
= F · v = Fv = (700N)(1.25 m

s
) = 875W .

(It may be hard to think of a stationary rope doing work on anybody, but that is what is
happening here.)

This number represents a rate of change in the potential energy of the marine; the energy
comes from someplace. He is losing (chemical) energy at a rate of 875W.

10. Water flows over a section of Niagara Falls at a rate of 1.2× 106 kg/ s and falls
50m. How many 60W bulbs can be lit with this power? [Ser4 7-54]

Whoa! Waterfalls? Bulbs? What’s going on here??
If a certain mass m of water drops by a height h (that is, ∆y = −h), then from Eq. 6.10,

gravity does an amount of work equal to mgh. If this change in height occurs over a time
interval ∆t then the rate at which gravity does work is mgh/∆t.

For Niagara Falls, if we consider the amount of water that falls in one second, then a
mass m = 1.2 × 106 kg falls through 50m and the work done by gravity is

Wgrav = mgh = (1.2 × 106 kg)(9.80 m
s2

)(50m) = 5.88 × 108 J .
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h

Figure 6.7: Snowball is launched at angle of 34◦ in Example 11.

This occurs every second, so gravity does work at a rate of

Pgrav =
mgh

∆t
=

5.88 × 108 J

1 s
= 5.88 × 108 W

As we see later, this is also the rate at which the water loses potential energy . This energy
can be converted to other forms, such as the electrical energy to make a light bulb function.
In this highly idealistic example, all of the energy is converted to electrical energy.

A 60W light bulb uses energy at a rate of 60 J
s

= 60W. We see that Niagara Falls
puts out energy at a rate much bigger than this! Assuming all of it goes to the bulbs, then
dividing the total energy consumption rate by the rate for one bulb tells us that

N =
5.88 × 108 W

60W
= 9.8 × 106

bulbs can be lit.

6.2.6 Conservation of Mechanical Energy

11. A 1.50 kg snowball is shot upward at an angle of 34.0◦ to the horizontal with
an initial speed of 20.0 m

s
. (a) What is its initial kinetic energy? (b) By how much

does the gravitational potential energy of the snowball–Earth system change as
the snowball moves from the launch point to the point of maximum height? (c)
What is that maximum height? [HRW5 8-31]

(a) Since the initial speed of the snowball is 20.0 m
s
, we have its initial kinetic energy:

Ki = 1
2
mv2

0 = 1
2
(1.50 kg)(20.0 m

s
)2 = 300. J

(b) We need to remember that since this projectile was not fired straight up, it will still
have some kinetic energy when it gets to maximum height! That means we have to think a
little harder before applying energy principles to answer this question.



142 CHAPTER 6. WORK, KINETIC ENERGY AND POTENTIAL ENERGY

At maximum height, we know that the y component of the snowball’s velocity is zero.
The x component is not zero.

But we do know that since a projectile has no horizontal acceleration, the x component
will remain constant ; it will keep its initial value of

v0x = v0 cos θ0 = (20.0 m
s
) cos 34◦ = 16.6 m

s

so the speed of the snowball at maximum height is 16.6 m
s
. At maximum height, (the final

position) the kinetic energy is

Kf = 1
2
mv2

f = 1
2
(1.50 kg)(16.6 m

s
)2 = 206. J

In this problem there are only conservative forces (namely, gravity). The mechanical
energy is conserved:

Ki + Ui = Kf + Uf

We already found the initial kinetic energy of the snowball: Ki = 300. J. Using Ugrav = mgy
(with y = 0 at ground level), the initial potential energy is Ui = 0. Then we can find the
final potential energy of the snowball:

Uf = Ki + Ui −Kf

= 300. J + 0 − 206. J

= 94. J

The final gravitational potential energy of the snowball–earth system (a long–winded way
of saying what U is!) is then 94. J. (Since its original value was zero, this is the answer to
part (b).)

(c) If we call the maximum height of the snowball h, then we have

Uf = mgh

Solve for h:

h =
Uf

mg
=

(94. J)

(1.5 kg)(9.80 m
s2

)
= 6.38m

The maximum height of the snowball is 6.38m.

12. A pendulum consists of a 2.0 kg stone on a 4.0m string of negligible mass. The
stone has a speed of 8.0 m

s
when it passes its lowest point. (a) What is the speed

when the string is at 60◦ to the vertical? (b) What is the greatest angle with the
vertical that the string will reach during the stone’s motion? (c) If the potential
energy of the pendulum–Earth system is taken to be zero at the stone’s lowest
point, what is the total mechanical energy of the system? [HRW5 8-32]

(a) The condition of the pendulum when the stone passes the lowest point is shown in
Fig. 6.8(a). Throughout the problem we will measure the height y of the stone from the
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60o

2.0 kg

4.0 m

8.0 m/s

(a) (b)

v= ?

Figure 6.8: (a) Pendulum in Example 12 swings through lowest point. (b) Pendulum has swung 60◦ past
lowest point.

bottom of its swing. Then at the bottom of the swing the stone has zero potential energy,
while its kinetic energy is

Ki = 1
2
mv2

0 = 1
2
(2.0 kg)(8.0 m

s
)2 = 64J

When the stone has swung up by 60◦ (as in Fig. 6.8(b)) it has some potential energy. To
figure out how much, we need to calculate the height of the stone above the lowest point of

the swing. By simple geometry, the stone’s position is

(4.0m) cos 60◦ = 2.0m

down from the top of the string, so it must be

4.0m − 2.0m = 2.0m

up from the lowest point. So its potential energy at this point is

Uf = mgy = (2.0 kg)(9.80 m
s2

)(2.0m) = 39.2 J

It will also have a kinetic energy Kf = 1
2
mv2

f , where vf is the final speed.
Now in this system there are only a conservative force acting on the particle of interest,

i.e. the stone. (We should note that the string tension also acts on the stone, but since
it always pulls perpendicularly to the motion of the stone, it does no work.) So the total
mechanical energy of the stone is conserved:

Ki + Ui = Kf + Uf

We can substitute the values found above to get:

64.0 J + 0 = 1
2
(2.0 kg)v2

f + 39.2 J

which we can solve for vf :

(1.0 kg)v2
f = 64.0 J − 39.2 J = 24.8 J =⇒ v2

f = 24.8 m2

s2
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q

4.0 m

4.0 m

Figure 6.9: Stone reaches its highest position in the swing, which we specify by some angle θ measured
above the horizontal.

and then:
vf = 5.0 m

s

The speed of the stone at the 60◦ position will be 5.0 m
s
.

(b) Clearly, since the stone is still in motion at an angle of 60◦, it will keep moving to greater
angles and larger heights above the bottom position. For all we know, it may keep rising
until it gets to some angle θ above the position where the string is horizontal, as shown
in Fig. 6.9. We do assume that the string will stay straight until this point, but that is a
reasonable assumption.

Now at this point of maximum height, the speed of the mass is instantaneously zero. So
in this final position, the kinetic energy is Kf = 0. Its height above the starting position is

y = 4.0m + (4.0m) sin θ = (4.0m)(1 + sin θ) (6.27)

so that its potential energy there is

Uf = mgyf = (2.0 kg)(9.80 m
s2

)(4.0m)(1 + sin θ) = (78.4 J)(1 + sin θ)

We use the conservation of mechanical energy (from the position at the bottom of the swing)
to find θ: Ki + Ui = Kf + Uf , so:

Uf = Ki + Ui − Kf =⇒ (78.4 J)(1 + sin θ) = 64 J + 0 − 0

This gives us:

1 + sin θ =
78.4 J

64 J
= 1.225 =⇒ sin θ = 0.225

and finally
θ = 13◦

We do get a sensible answer of θ so we were right in writing down Eq. 6.27. Actually this
equation would also have been correct if θ were negative and the pendulum reached its
highest point with the string below the horizontal.
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R

A

h

Figure 6.10: Bead slides on track in Example 13.

13. A bead slides without friction on a loop–the–loop track (see Fig. 6.10). If
the bead is released from a height h = 3.50R, what is its speed at point A? How
large is the normal force on it if its mass is 5.00 g? [Ser4 8-11]

In this problem, there are no friction forces acting on the particle (the bead). Gravity acts
on it and gravity is a conservative force. The track will exert a normal forces on the bead,
but this force does no work. So the total energy of the bead —kinetic plus (gravitational)
potential energy— will be conserved.

At the initial position, when the bead is released, the bead has no speed; Ki = 0. But
it is at a height h above the bottom of the track. If we agree to measure height from the
bottom of the track, then the initial potential energy of the bead is

Ui = mgh

where m = 5.00 g is the mass of the bead.
At the final position (A), the bead has both kinetic and potential energy. If the bead’s

speed at A is v, then its final kinetic energy is Kf = 1
2
mv2. At position A its height is 2R

(it is a full diameter above the “ground level” of the track) so its potential energy is

Uf = mg(2R) = 2mgR .

The total energy of the bead is conserved: Ki + Ui = Kf + Uf . This gives us:

0 + mgh = 1
2
mv2 + 2mgR ,

where we want to solve for v (the speed at A). The mass m cancels out, giving:

gh = 1
2
v2 = 2gR =⇒ 1

2
v2 = gh − 2gR = g(h − 2R)

and then
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Figure 6.11: Forces acting on the bead when it is at point A (the top of the loop).

v2 = 2g(h − 2R) = 2g(3.50R − 2R) = 2g(1.5R) = 3.0 gR (6.28)

and finally

v =
√

3.0 gR .

Since we don’t have a numerical value for R, that’s as far as we can go.

In the next part of the problem, we think about the forces acting on the bead at point A.
These are diagrammed in Fig. 6.11. Gravity pulls down on the bead with a force mg. There
is also a normal force from the track which I have drawn as having a downward component
N . But it is possible for the track to be pushing upward on the bead; if we get a negative
value for N we’ll know that the track was pushing up.

At the top of the track the bead is moving on a circular path of radius R, with speed v.
So it is accelerating toward the center of the circle, namely downward. We know that the
downward forces must add up to give the centripetal force mv2/R:

mg + N =
mv2

R
=⇒ n =

mv2

R
− mg = m

(

v2

R
− g

)

.

But we can use our result from Eq. 6.28 to substitute for v2. This gives:

N = m
(

3.0 gR

R
− g

)

= m(2g) = 2mg

Plug in the numbers:

N = 2(5.00 × 10−3 kg)(9.80 m
s2

) = 9.80 × 10−2 N

At point A the track is pushing downward with a force of 9.80 × 10−2 N.

14. Two children are playing a game in which they try to hit a small box on the
floor with a marble fired from a spring –loaded gun that is mounted on the table.
The target box is 2.20m horizontally from the edge of the table; see Fig. 6.12.
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2.20 m

Figure 6.12: Spring propels marble off table and hits (or misses) box on the floor.

1.10 cm
v

(a) (b)

Figure 6.13: Marble propelled by the spring–gun: (a) Spring is compressed, and system has potential
energy. (b) Spring is released and system has kinetic energy of the marble.

Bobby compresses the spring 1.10 cm, but the center of the marble falls 27.0 cm
short of the center of the box. How far should Rhoda compress the spring to
score a direct hit? [HRW5 8-36]

Let’s put the origin of our coordinate system (for the motion of the marble) at the edge
of the table. With this choice of coordinates, the object of the game is to insure that the x
coordinate of the marble is 2.20m when it reaches the level of the floor.

There are many things we are not told in this problem! We don’t know the spring
constant for the gun, or the mass of the marble. We don’t know the height of the table
above the floor, either!

When the gun propels the marble, the spring is initially compressed and the marble is
motionless (see Fig. 6.13(a).) The energy of the system here is the energy stored in the spring,
Ei = 1

2
kx2, where k is the force constant of the spring and x is the amount of compression

of the spring.) When the spring has returned to its natural length and has given the marble
a speed v, then the energy of the system is Ef = 1

2
mv2. If we can neglect friction then

mechanical energy is conserved during the firing, so that Ef = Ei, which gives us:

1
2
mv2 = 1

2
kx2 =⇒ v =

√

k

m
x2 = x

√

k

m
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We will let x and v be the compression and initial marble speed for Bobby’s attempt. Then
we have:

v = (1.10 × 10−2 m)

√

k

m
(6.29)

The marble’s trip from the edge of the table to the floor is (by now!) a fairly simple
kinematics problem. If the time the marble spends in the air is t and the height of the table
is h then the equation for vertical motion tells us:

h = 1
2
gt2 .

(This is true because the marble’s initial velocity is all horizontal . We do know that on
Bobby’s try, the marble’s x coordinate at impact was

x = 2.20m − 0.27m = 1.93m

and since the horizontal velocity of the marble is v, we have:

vt = 1.93m . (6.30)

There are too many unknowns to solve for k, v, h and t. . . but let’s go on.
Let’s suppose that Rhoda compresses the spring by an amount x′ so that the marble is

given a speed v′. As before, we have
1
2
mv′2 = 1

2
kx′2

(it’s the same spring and marble so that k and m are the same) and this gives:

v′ = x′

√

k

m
. (6.31)

Now when Rhoda’s shot goes off the table and through the air, then if its time of flight is t′

then the equation for vertical motion gives us:

h = 1
2
gt′

2
.

This is the same equation as for t, so that the times of flight for both shots is the same:
t′ = t. Since the x coordinate of the marble for Rhoda’s shot will be x = 2.20m, the equation
for horizontal motion gives us

v′t = 2.20m (6.32)

What can we do with these equations? If we divide Eq. 6.32 by Eq. 6.30 we get:

v′t

vt
=

v′

v
=

2.20

1.93
= 1.14

If we divide Eq. 6.31 by Eq. 6.29 we get:

v′

v
=

x′

√

k
m

(1.10 × 10−2 m)
√

k
m

=
x′

(1.10 × 10−2 m)
.

With these last two results, we can solve for x′. Combining these equations gives:

1.14 =
x′

(1.10 × 10−2 m)
=⇒ x′ = 1.14(1.10 × 10−2 m) = 1.25 cm

Rhoda should compress the spring by 1.25 cm in order to score a direct hit.
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mk = 0.40

m= 3.0 kg

M= 5.0 kg

Figure 6.14: Moving masses in Example 15. There is friction between the surface and the 3.0 kg mass.

mg

N

T

fk

d

d

(a) (b)

Figure 6.15: (a) Forces acting on m. (b) Masses m and M travel a distance d = 1.5 m as they increase in
speed from 0 to v.

6.2.7 Work Done by Non–Conservative Forces

15. The coefficient of friction between the 3.0 kg mass and surface in Fig. 6.14 is
0.40. The system starts from rest. What is the speed of the 5.0 kg mass when it
has fallen 1.5m? [Ser4 8-25]

When the system starts to move, both masses accelerate; because the masses are con-
nected by a string, they always have the same speed . The block (m) slides on the rough
surface, and friction does work on it. Since its height does not change, its potential energy
does not change, but its kinetic energy increases. The hanging mass (M) drops freely; its
potential energy decreases but its kinetic energy increases.

We want to use energy principles to work this problem; since there is friction present,
we need to calculate the work done by friction.

The forces acting on m are shown in Fig. 6.15(a). The normal force N must be equal to
mg, so the force of kinetic friction on m has magnitude µkN = µkmg. This force opposes
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the motion as m moves a distance d = 1.5m, so the work done by friction is

Wfric = fkd cos φ = (µkmg)(d)(−1) = −(0.40)(3.0 kg)(9.80 m
s2

)(1.5m) = −17.6 J .

Mass m’s initial speed is zero, and its final speed is v. So its change in kinetic energy is

∆K = 1
2
(3.0 kg)v2 − 0 = (1.5 kg)v2

As we noted, m has no change in potential energy during the motion.
Mass M ’s change in kinetic energy is

∆K = 1
2
(5.0 kg)v2 − 0 = (2.5 kg)v2

and since it has a change in height given by −d, its change in (gravitational) potential energy
is

∆U = Mg∆y = (5.0 kg)(9.80 m
s2

)(−1.5m) = −73.5 J

Adding up the changes for both masses, the total change in mechanical energy of this system
is

∆E = (1.5 kg)v2 + (2.5 kg)v2 − 73.5 J

= (4.0 kg)v2 − 73.5 J

Now use ∆E = Wfric and get:

(4.0 kg)v2 − 73.5 J = −17.6 J

Solve for v:

(4.0 kg)v2 = 55.9 J =⇒ v2 =
55.9 J

4.0 kg
= 14.0 m2

s2

which gives
v = 3.74 m

s

The final speed of the 5.0 kg mass (in fact of both masses) is 3.74 m
s
.

16. A 10.0 kg block is released from point A in Fig. 6.16. The track is friction-
less except for the portion BC, of length 6.00m. The block travels down the
track, hits a spring of force constant k = 2250N/m, and compresses it 0.300m
from its equilibrium position before coming to rest momentarily. Determine the
coefficient of kinetic friction between surface BC and block. [Ser4 8-35]

We know that we must use energy methods to solve this problem, since the path of the
sliding mass is curvy.

The forces which act on the mass as it descends and goes on to squish the spring are:
gravity, the spring force and the force of kinetic friction as it slides over the rough part.
Gravity and the spring force are conservative forces, so we will keep track of them with the
potential energy associated with these forces. Friction is a non-conservative force, but in
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Figure 6.16: System for Example 16

0.300 m

v = 0
Equil. pos.
of spring

Figure 6.17: After sliding down the slope and going over the rough part, the mass has maximally squished
the spring by an amount x = 0.300 m.

this case we can calculate the work that it does. Then, we can use the energy conservation
principle,

∆K + ∆U = Wnon−cons (6.33)

to find the unknown quantity in this problem, namely µk for the rough surface. We can

get the answer from this equation because we have numbers for all the quantities except for
Wnon−cons = Wfriction which depends on the coefficient of friction.

The block is released at point A so its initial speed (and hence, kinetic energy) is zero:
Ki = 0. If we measure height upwards from the level part of the track, then the initial
potential energy for the mass (all of it gravitational) is

Ui = mgh = (10.0 kg)(9.80 m
s2

)(3.00m) = 2.94 × 102 J

Next, for the “final” position of the mass, consider the time at which it has maximally
compressed the spring and it is (instantaneously) at rest. (This is shown in Fig. 6.17.) We
don’t need to think about what the mass was doing in between these two points; we don’t
care about the speed of the mass during its slide.

At this final point, the mass is again at rest, so its kinetic energy is zero: Kf = 0. Being
at zero height, it has no gravitational potential energy but now since there is a compressed
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spring, there is stored (potential) energy in the spring. This energy is given by:

Uspring = 1
2
kx2 = 1

2
(2250 N

m
)(0.300m)2 = 1.01 × 102 J

so the final potential energy of the system is Uf = 1.01 × 102 J.

The total mechanical energy of the system changes because there is a non–conservative
force (friction) which does work. As the mass (m) slides over the rough part, the vertical
forces are gravity (mg, downward) and the upward normal force of the surface, N . As there
is no vertical motion, N = mg. The magnitude of the force of kinetic friction is

fk = µkN = µkmg = µk(10.0 kg)(9.80 m
s2

) = µk(98.0N)

As the block moves 6.00m this force points opposite (180◦ from ) the direction of motion.
So the work done by friction is

Wfric = fkd cos φ = µk(98.0N)(6.00m) cos 180◦ = −µk(5.88 × 102 J)

We now have everything we need to substitute into the energy balance condition, Eq. 6.33.
We get:

(0 − 0) + (1.01 × 102 J − 2.94 × 102 J) = −µk(5.88 × 102 J) .

The physics is done. We do algebra to solve for µk:

−1.93 × 102 J = −µk(5.88 × 102 J) =⇒ µk = 0.328

The coefficient of kinetic friction for the rough surface and block is 0.328.

6.2.8 Relationship Between Conservative Forces and Potential En-

ergy (Optional?)

17. A potential energy function for a two–dimensional force is of the form U =
3x3y − 7x. Find the force that acts at the point (x, y). [Ser4 8-39]

(We presume that the expression for U will give us U in joules when x and y are in
meters!)

We use Eq. 6.26 to get Fx and Fy:

Fx = −
∂U

∂x

= −
∂

∂x
(3x3y − 7x)

= −(9x2y − 7) = −9x2y + 7
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and:

Fy = −
∂U

∂y

= −
∂

∂y
(3x3y − 7x)

= −(3x3) = −3x3

Then in unit vector form, F is:

F = (−9x2y + 7)i + (−3x3)j

where, if x and y are in meters then F is in newtons. Got to watch those units!
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