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Chapter 1

Electric Charge and Coulomb’s Law

1.1 The Important Stuff

1.1.1 Electric Charge

In the latter part of the 18th century it was realized that any sample of matter has a property
which is as fundamental as its mass. This property is the electric charge of the sample.
Electric charge can be detected because it gives rise to electric forces. The reason that we
don’t see electric phenomena more often than we do is that electric charges come in two
types —positive and negative— and usually the two types occur in equal numbers so that
they add to give zero net charge. But when we can separate positive and negative charges
we observe electric forces on a large scale.

In the SI system, electric charge is measured in Coulombs. Throughout our study of
electromagnetism we will derive other electrical units based on the Coulomb and the units
already encountered in mechanics.

After decades of study of the electrical properties of matter, it was found that the fun-
damental charges in nature occur in integer multiples of the elementary charge e,

e = 1.602 × 10−19 C (1.1)

In discussing this property of charge we often say that electric charge is quantized.
In the atom, the nucleus has a charge which is a multiple of +e while the orbiting electrons

each have a charge of −e. The charge of the nucleus comes from the constituent protons,
each of which has a charge of +e; the neutrons in the nucleus have no charge.

1.1.2 Some Facts About Electric Charge

Electric charges can be separated by rubbing, as when you rub a plastic rod with some
roadkill; see Fig. 1.1. Then one of the objects will obtain a positive charge and the other
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Figure 1.1: Roadkill: Good for separating charges and mighty good eatin’.
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Figure 1.2: (a) Charges q1 and q2 have the same sign; the mutual force is repulsive. (b) Charges q1 and q2

have opposite signs; the mutual force is attractive.

a negative charge. This occurs because the negatively–charged electrons are removed from
one object and deposited on the other.

It has been found that in an isolated system the total amount of charge stays the same,
i.e. total electric charge is conserved .

It is also found that electric charges of the same sign (i.e. both positive or both negative)
will repel and electric charges of opposite sign (i.e. one positive and one negative) will attract .

In understanding the behavior of charged objects it is important to understand how
charges can move through them. To this end we distinguish objects as being either con-
ductors or insulators. Excess charge can move freely through a conductor and since like
charges repel one another, the charges on a charged conductor will generally move around
to space themselves out as much as possible.

In contrast, for insulators excess charge cannot move freely and generally will stay where
it is placed.

1.1.3 Coulomb’s Law

The force between two small (point) charges is directed along the line which joins the two
charges and is repulsive for two charges of the same sign, attractive for two charges of
the opposite sign. (See Fig. 1.2. It is proportional to the size of either one of the two
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charges; finally, it gets weaker as the distance between the charges increases. But the force
is not inversely proportional to the distance, it is inversely proportional to the square of the
distance.

The law for the magnitude of the electric force between two small charges q1 and q2

separated by a distance r is

F = k
|q1q2|

r2
where k = 8.99 × 109 N·m2

C2 (1.2)

This is usually called Coulomb’s law.
The constant k will come up often in our examples but later on it will be easier to work

with the constant ε0, which is related to k by

k =
1

4πε0

so that ε0 has the value

ε0 =
1

4πk
= 8.85 × 10−12 C2

N·m2 (1.3)

The electric force given by Coulomb’s law is similar to Newton’s law for the gravitational
force (from first semeseter) in that both are inverse–square laws; the force is inversely
proportional to the square of the distance between the particles.

If we plug some easy numbers into Eq. 1.2 we find that if two 1.0C charges are separated
by a meter, then each one experiences a repulsive force of about 9.0 × 109 N, which is an
enormous force. In this sense, 1C is a huge amount of charge; typically the charges which
one would encounter in real life are of the order of µC (10−6 C) or nC (10−9 C).

When a charge Q is in the vicinity of several other charges (q1, q2, etc.) the net force on
Q is found by adding up the individual forces from the other charges. Of course, this is a
vector sum of the forces.

1.2 Worked Examples

1.2.1 Electric Charge

1. How many electrons must you have to get a total charge of −1.0C? How many
moles of electrons is this?
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Since each electron has a charge of −1.6 × 10−19 C, the number of electrons required is

N =
(−1.0C)

(−1.6 × 10−19 C)
= 6.2 × 1018

A mole of any kind of particle is NAvo = 6.02 × 1023 (Avogadro’s number) of those
particles. Here we have 6.2 × 1018 electrons and that is

n =
N

NAvo
=

(6.2 × 1018)

(6.02 × 1023)
= 1.04 × 10−5 moles

2. A metal sphere has a charge of +8.0µC. What is the net charge after 6.0×1013

electrons have been placed on it? [CJ6 15-2]

The total charge of 6.0 × 1013 electrons is

Qelec = (6.0 × 1013)(−e) = (6.0 × 1013)(−1.60 × 10−19 C) = −9.6 × 10−6 C = −9.6µC

After this charge has been added to the metal sphere its total charge is

Qsph = +8.0µC − 9.6µC = −1.6µC

1.2.2 Coulomb’s Law

3. A charge of 4.5 × 10−9 C is located 3.2m from a charge of −2.8 × 10−9 C. Find
the electrostatic force exerted by one charge on another. [SF7 15-1]

This will be a force of attraction between the two charges since they are of opposite signs.
The magnitude of this force is given by Coulomb’s law, Eq. 1.2,

F = k
|q1q2|
r2

= (8.99 × 109 N·m2

C2 )
(4.5 × 10−9 C)(2.8 × 10−9 C)

(3.2m)2
= 1.1 × 10−8 N

The charges will attract one another with a force of magnitude 1.1 × 10−8 N.

4. An alpha particle (charge=+2.0e) is sent at high speed toward a gold nucleus
(charge=+79e). What is the electrical force acting on the alpha particle when it
is 2.0 × 10−14 m from the gold nucleus? [SF7 15-3]
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Here both particles are positively charged so there is a force of repulsion between them.
The magnitude of this force of repulsion is given by Coulomb’s law,

F = k
|q1q2|

r2
= k

(2.0)e(79.0)e

r2

= (8.99 × 109 N·m2

C2 )
(2.0)(79.0)(1.6 × 10−19 C)2

(2.0 × 10−14 m)2
= 91.1N

So the alpha particle experiences a (repulsive) force of 91N from the gold nucleus.

5. Two identical conducting spheres are placed with their centers 0.30m apart.
One is given a charge of 12 × 10−9 C, the other a charge of −18 × 10−9 C. (a) Find
the electrostatic force exerted on one sphere by the other. (b) The spheres are
connected by a conducting wire. Find the electrostatic force between the two
after equilibrium is reached. [SF7 15-9]

(a) Use Coulomb’s law to find the magnitude of the force, which in this case is attractive
since the spheres are oppositely charged:

F = k
|q1q2|

r2
= (8.99 × 109 N·m2

C2 )
(12 × 10−9 C)(18 × 10−9 C)

(0.30m)2
= 2.16 × 10−5 N

(b) When the (conducting) spheres are connect by a (thin!) conducting wire, the electric
charges are free to move between the spheres. The total charge on both spheres is

QTot = 12 × 10−9 C − 18 × 10−9 C = −6.0 × 10−9 C

and when this charge is free to move between the spheres it will attain an equilibrium when
both spheres have the same charge. So after the spheres are connected the charge of each is

Q = QTot/2 = −3.0 × 10−9 C

This is shown in Fig. 1.3.
With the new charges on the spheres, use Coulomb’s law to get the magnitude of the

force on each:

F = k
|q1q2|

r2
= (8.99 × 109 N·m2

C2 )
(3.0 × 10−9 C)(3.0 × 10−9 C)

(0.30m)2
= 8.99 × 10−7 N

and now the force is repulsive since both spheres are both negatively charged.

6. Three charges are arranged as shown in Fig. 1.4. Find the magnitude and
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(a)

12 x 10-9 C -18 x 10-9 C -3.0 x 10-9 C -3.0 x 10-9 C

(b)

Figure 1.3: (a) Conducting spheres are given different charges. (b) Charges on the spheres after being
joined by a conducting wire.

5.00 nC 6.00 nC

-3.00 nC

0.300 m

0.100 m

x

y

Figure 1.4: Charges in Example 6

direction of the electrostatic force on the charge at the origin. [SF7 15-11]

Let’s call the 6.00nC charge q1 and the −3.00nC charge q2. (The charge at the origin is
Q = +5.00nC.)

The force from q1 is repulsive and points to the right. The force from q2 is attractive and
points downward, as shown in Fig. 1.5. We need to find the magnitudes of F1 and F2 and
then add those two force vectors.

From Coulomb’s law we get the magnitude of F1; since charge q1 is at a distance r1 =

5.00 nC

Q
F1

F2

Fnet

Figure 1.5: Forces on Q in Example 6



1.2. WORKED EXAMPLES 7

0.300m from Q,

F1 = k
|Qq1|
r2
1

= (8.99 × 109 N·m2

C2 )
(5.00 × 10−9 C)(6.00 × 10−9 C)

(0.300m)2
= 3.00 × 10−6 N

Likewise, the magnitude of F2 is

F2 = k
|Qq2|
r2
2

= (8.99 × 109 N·m2

C2 )
(5.00 × 10−9 C)(3.00 × 10−9 C)

(0.100m)2
= 1.35 × 10−5 N

Then the total force on Q has the components

Fx = −3.00 × 10−6 N Fy = −1.35 × 10−5 N

What is the magnitude and direction of this vector? Its magnitude is

F =
√

(−3.00 × 10−6 N)2 + (−1.35 × 10−5 N)2 = 1.38 × 10−5 N

and the direction we can find from

θ = tan−1 (−1.35 × 10−5)

(−3.00 × 10−6)
= 77.5◦ − 180◦ = −103◦

(Note, we subtract 180◦ from the simple answer because the direction of the force is in the
third quadrant.)

The net force on Q has magnitude 1.38 × 10−5 N and points at an angle of −103◦ from
the +x axis.

7. Two small metallic spheres, each of mass 0.20 g are suspended as pendulums
by light strings from a common point as shown in Fig. 1.6. The spheres are given
the same electric charge and it is found that they come to equilibrium when each
string is at an angle of 5.0◦ with the vertical. If each string is 30.0 cm long, what
is the magnitude of the charge on each sphere? [SF7 15-15]

From simple trig we can calculate the distance between the two spheres. If this distance
is x, then

x = 2(30.0m) sin 5.0◦ = 5.23 cm = 5.23 × 10−2 m



8 CHAPTER 1. ELECTRIC CHARGE AND COULOMB’S LAW

30.0 cm

0.20 g

qq

30.0 cm

0.20 g

Figure 1.6: Suspended charged spheres in Example 7

5.0
o

mg

Felec

T

x

5.0
o

Figure 1.7: Forces acting on a charged sphere in Example 7



1.2. WORKED EXAMPLES 9

Now consider the forces acting on one of the spheres, say the one on the right. These are
shown in Fig. 1.7, where we also note (for reference) the location of other sphere. The right
sphere experiences a force of electric repulsion from the left sphere. The forces are the force
of gravity (mg, downward), the tension of the string (magnitude T ; it pulls at an angle 5.0◦

from the vertical) and the electric repulsive force. From Coulomb’s law, the magnitude of
the latter is

Felec = k
q2

x2

where q is the magnitude of the charge on each sphere.
The sphere is in equilibrium, so the forces must sum to zero. The vertical forces cancel

out, giving us:

T cos 5.0◦ = mg =⇒ T =
mg

cos 5.0◦
=

(2.00 × 10−4 kg)(9.80 m
s2

)

cos 5.0◦
= 1.97 × 10−3 N

The horizontal forces cancel out and this gives:

T sin 5.0◦ = Felec = k
q2

x2

which lets us solve for q:

q2 =
Tx2 sin 5.0◦

k
=

(1.97 × 10−3 N)(5.23 × 10−2)2 sin 5.0◦

(8.99 × 109 N·m2

C2 )
= 5.22 × 10−17 C2

so then
q = 7.2 × 10−9 C = 7.2nC
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Chapter 2

The Electric Field

2.1 The Important Stuff

2.1.1 The Electric Field

When we solved the longer Coulomb Law problems in the previous chapter we added up the
(vector) forces from charges q1, q2, . . . acting on a certain charge Q. Now, each one of these
individual forces (and hence the sum of those forces) is proportional to the charge Q. If in
each of those problems we divided the net force by the charge Q we would get a force per

unit charge at the location of Q. This quantity (which is a vector, since force is a vector)
would depend on the values and locations of the charges q1, q2 . . .. This idea is represented
in Fig. 2.1.

So, a given configuration of charges q1, q2 . . . gives rise to an electric field E such that
the force on a charge Q is given by

F = QE . (2.1)

Q

q1

q3

q2

F

q1

q3

q2

E = F / Q

(a) (b)

Figure 2.1: (a) Charge Q experiences a force F from the charges q1, q2 . . .. (b) The quantity E = F/Q
depends only on the charges q1, q2 . . ..

11
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q

E

q

E

P
P

r

(a) (b)

Figure 2.2: (a) Point P is a distance r away from charge q. If q is positive, the electric field points away
from q. (b) If q is negative, the electric field points toward q. In both cases the magnitude of E is given by
E = k|q|/r2.

When we use this equation we mean that after we put Q in place all the little charges
q1, q2 . . . are in the same places they were when we deduced the value of E from their values
and positions! This will be true in practice if the “test charge” Q is small. Thus we give a
practical definition of the E field as

E =
F

Q
where Q is a small charge (2.2)

From Eq. 2.2 we see that the electric field is a vector and has units of N/C.

We note that finding the electric field is more useful than finding the force on a specific

charge since once we have the E field we simply multiply by the charge Q to get the force,
as given by Eq. 2.1.

2.1.2 Finding the Electric Field

It follows from Coulomb’s law that at a point which is a distance r from a point charge q,
the magnitude of the electric field is

Ept−ch = k
|q|
r2

(2.3)

and the direction of the field is away from q if q is positive and toward q if q is negative.
This is shown in Fig. 2.2.

When we need to find the electric field due a collection of point charges we find the
electric field due to each charge and then find the (vector) sum.
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P

E

z

Figure 2.3: Point P is at some distance z above an infinte plane of charge with charge density σ. If σ is
positive the E field points away from the sheet and has magnitude σ/(2ε0).

2.1.3 Continuous Distributions; Sheets of Charge

Many charged objects we encounter are not sets of points charges; rather they are continuous
distributions of charge. If a two-dimensional region of space contains a charge we can talk
about its charge per unit area, or surface charge density.

Surface charge density is usually given the symbol σ; it has units of C/m2.
The simplest case of a surface charge is that of an infinite planar sheet of charge with

uniform charge density σ. We want to know the value of the electric field E at a point P
which is a distance z from the plane; see Fig. 2.3.

It turns out that the answer does not depend on z. If σ is positive, the electric field at
P points away from the sheet and has magnitude

Einf−sh =
σ

2ε0

. (2.4)

Here it is easiest to express the result using the constant ε0 introduced in Eq. 1.3
If the sheet has a negative charge density then the field points toward the sheet and the

magnitude of the field is E = |σ|/(2ε0).

Next we take the case of the two very large, flat, parallel sheets of charge, as shown in
Fig. 2.4. A total charge of +Q has been placed on one sheet and a charge of −Q on the
other. We assumed the charge is spread around uniformly so that the charge density of the
positively-charge sheet is σ = Q

A
.

This situation can arise when equal and opposite charges are placed on metal plates which
are held apart at some distance. (Such a device is called a parallel–plate capacitor.) Our
approximation is suitable for the case where the plates are separated by a distance which is
small compared with the linear size of the plates.

From Eq. 2.4 it follows that the magnitude of the E field between the plates is twice that
of the single sheet,

Einf−sh =
σ

ε0
=

Q

ε0A
. (2.5)
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P

E

+Q, A

-Q, A

Figure 2.4: Point P is between two very large sheets of charge. On one sheet the total charge is +Q and
on the other it is −Q. Both sheets have area A. With σ = Q/A, the electric field between the plates has
magnitude σ/ε0.

and the field points from the positive plate to the negative plate.
This equation gives the E field anywhere between the plates and it is good as long we

can approximate the plates as “very large”. Near the edges of the plates it is not a very
good approximation.

2.1.4 Electric Field Lines

While the direction of the electric field near a point charge or between two large plates has a
simple answer, most charge distributions produce electric fields dependence on position can
be hard to visualize.

To help in seeing the direction of the electric at all points we imagine finding the direction
of the electric field at all points in space, represented by a little arrow at any point. Then if
we join nearby arrows together to form a curve we get an electric field line. This is shown
in Fig. 2.5 for a (positive) point charge; the field lines start on the charge and go outward.
(For a negative charge the field lines would go inward to the charge.)

An interesting and important configuration of charges is the electric dipole which con-
sists of two opposite charges ±q separated by a distance which is usually taken to be “small”
in some sense. Near the charge +q the electric field points mainly away from the charge
and near the charge −q the field points mainly toward the charge. At other points in space
we have to form the sum of the field from the two charges and add. The result is shown in
Fig. 2.6.

The mathematics of the electric force gives the following properties of field lines:

• Field lines begin and end only on charges; they start on positive charges and end on
negative charges.
• Field lines cannot cross one another.

Field lines give us the direction of the electric field at any point, but since we have joined
the arrows togther to form them, a single field line can’t tell the magnitude of the E field.
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+q +q

(a) (b)

Figure 2.5: (a) A representation of the electric field around a point charge using individual vectors. (b)
Representation of the electric field around a point charge using field lines.

+q -q

Figure 2.6: Field lines of an electric dipole.
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Felec = qE

Fgrav = mg

q
m

Figure 2.7: Forces on the charged mass in Example 1. The electric force is upward (in the same direction
as the E field). The force of gravity is downward.

But the mathematics of the electric force tell us that the number of field lines that we draw
originating on a charge should be proportional the the size of the charge. If we follow that
rule, then the magnitude of the electric field can be judged from the density of field lines at
any point. If the lines are closely space, the electric field is strong at that place.

2.1.5 Conductors

In conductors any excess charge is free to move through the material.

2.2 Worked Examples

2.2.1 The Electric Field

1. An object with a net charge of 24µC is placed in a uniform electric field of
610 N

C
, directed vertically. What is the mass of the object if it “floats” in the

electric field? [SF7 15-17]

The forces acting on this object (of mass m and charge q are shown in Fig. 2.7. The
force of gravity has magnitude mg and points downward. The electric force, from Eq. 2.1
has magnitude qE and points upward. (Here the charge q is positive so that the force points
in the same direction as the E field.)

The object ”floats” so the net force on it must be zero. Hence:

qE = mg =⇒ m =
qE

g
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15.0o

m = 2.00 g

E = 1.00 x 103 N/C

20.0 cm

Figure 2.8: Plastic ball suspended in uniform E field, in Example 3.

Plug in the numbers:

m =
(24 × 10−6 C)(610 N

C
)

(9.80 m
s2

)
= 1.5 × 10−3 kg

So the mass of the object is 1.5 grams.

2. An electric field of 260000 N
C

points due west at a certain spot. What are the
magnitude and direction of the force that acts on a charge of −7.0µC at this
spot? [CJ6 18-25]

From F = qE, the magnitude of the force is

F = |q|E = (7.0µC)(260000 N
C
) = (7.0 × 10−6 C)(2.60 × 105 N

C
) = 1.8N

Since the charge q is negative here, the direction of the force is opposite that of the field E,
so the force points to the East.

3. A small 2.00-g plastic ball is suspended by a 20.0-cm -long string in a uniform
electric field, as shown in Fig. 2.8. If the ball is in equilibrium when the string
makes a 15.0◦ angle with the vertical as indicated, what is the net charge on the
ball? [SF7 15-50]

First, make a free–body diagram of the forces acting on the ball. They are: The string
tension T directed along the string; the force of gravity, mg, downward; and the electric
force which must be parallel to the electric and so here it must point to the right . These
forces are shown in Fig. 2.9. The magnitude of the electric force is qE, where q is the charge
on the plastic ball; this charge must be positive since the force points in the same direction
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15.0o

m = 2.00 g

T

mg

Felec

Felec = qE

15.0o

Figure 2.9: Forces acting on the plastic ball in Example 3.

as E. The ball is in equilibrium so the (vector) sum of the forces is zero. The condition that
the vertical force components sum to zero allows us to find T :

T cos 15.0◦−mg = 0 =⇒ T =
mg

cos 15.0◦
=

(2.00 × 10−3 kg)(9.80 m
s2

)

(cos 15.0◦)
= 2.03×10−2 N

The condition that the horizontal forces sum to zero gives us:

−T sin 15◦ + Felec = −T sin 15◦ + qE = 0 =⇒ q =
T sin 15◦

E

Plug in the numbers and get:

q =
(2.03 × 10−2 N) sin 15◦

(1.00 × 10−3 N
C
)

= 5.25 × 10−6 C = 5.25µC

4. Each of the protons in a particle beam has a kinetic energy of 3.25 × 10−15 J.
What are the magnitude and direction of the electric field that will stop these
protons in a distance of 1.25m? [SF7 15-22]

First, use the proton mass and definition of kinetic to find the initial speed of these
protons. With mp = 1.67 × 10−27 kg, we find:

KE = 1
2
mpv

2 = 3.25 × 10−15 J =⇒ v2 =
2(3.25 × 10−15 J)

(1.67 × 10−27 kg)
= 3.89 × 1012 m2

s2

Then:
v = 1.97 × 106 m

s
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+e

v = 0

1.25 m

v = 1.97 x 106 m/s

Figure 2.10: Proton slows to a halt in Example 4.

The motion of the proton is as shown in Fig. 2.10. Using our equations of kinematics,
we can find the acceleration of the proton:

v2 = v2
0 + 2ax =⇒ a =

v2 − v2
0

2x
=

0 − (1.97 × 106 m
s
)2

2(1.25m)
= −1.56 × 1012 m

s2

which should be negative since the proton’s velocity decreases.
The force on the proton comes from the electric field, as given by Eq. 2.1:

Fx = max = qEx = +eEx

where we’ve used the fact that a proton’s charge is +e. Then:

Ex =
max

e
=

(1.67 × 10−27 kg)(−1.56 × 1012 m
s2

)

(1.60 × 10−19 C)
= −1.62 × 104 N

C

The electric field has magnitude 1.62×104 N
C

and points in the −x direction, that is, opposite
the initial motion of the proton.

5. A proton accelerates from rest in a uniform electric field of 640 N
C
. At some

time, its speed is 1.20 × 106 m
s
. (a) Find the magnitude of the acceleration of the

proton. (b) How long does it take the proton to reach this speed? (c) How far
has it moved in that interval? (d) What is its kinetic energy at the later time?
[SF7 15-23]

(a) The facts given in the problem are diagrammed in Fig. 2.11. If the E field points in
the +x direction, then from Eq. 2.1 the force on the proton is

Fx = qEx = +eEx

and the acceleration of the proton is

ax =
Fx

mp
=

eEx

mp
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+e

v = 0 v = 1.20 x 106 m/s

E

E

E

+e

Figure 2.11: Proton is accelerated by E field in Example 5.

Use mp = 1.67 × 10−27 kg and get:

ax =
(1.60 × 10−19 C)(640 N

C
)

(1.67 × 10−27 kg)
= 6.13 × 1010 m

s2

(b) We have the (constant) acceleration of the proton and its initial and final speeds so
using one of our equations from kinematics we can find the distance it traveled:

v2
x = v2

0x + 2axx =⇒ x =
(v2

x − v2
0x)

2ax

Plug in the numbers:

x =
(1.20 × 106 m

s
)2 − 0

2(6.13 × 1010 m
s2

)
= 11.7m

(c) Use the definition of kinetic energy, KE = 1
2
mv2 and get:

KE = 1
2
(1.67 × 10−27 kg)(1.20 × 106)2 = 1.20 × 10−15 J

2.2.2 Finding the Electric Field

6. Three point charges are aligned along the x-axis as shown in Fig. 2.12. Find
the electric field at the position x = +2.0m, y = 0. [SF7 15-49]

The point at which we want to calculate the E field, (2.0m, 0), lies to the right of all
the charges. At that point, the field due to the −4.0nC charge must point to the left since
it is a negative charge. That charge lies at a distance of 2.50m from So x-component of its
contribution is

E1,x = k
|q1|
r2
1

= (8.99 × 109 N·m2

C2 )
(4.0 × 10−9 C)

(2.50m)2
= −5.75 N

C
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5.0 nC 3.0 nC

0.50 m

x

y

-4.0 nC

0.80 m

2.00 m

Figure 2.12: Configuration of charges for Example 6.

6.0 mC-2.5 mC

1.0 m

Figure 2.13: Configuration of charges for Example 7.

The field due to the charge at the origin must point to the right since it is a positive
charge. The x-component of its contribution is

E2,x = k
|q2|
r2
2

= (8.99 × 109 N·m2

C2 )
(5.0 × 10−9 C)

(2.00m)2
= +11.2 N

C

Finally, the field due to the 3.0nC charge must also point to the right since it is a positive
charge. This charge’s distance from our “observation” point is 1.20m, so the x-component
of its contribution is

E3,x = k
|q3|
r2
3

= (8.99 × 109 N·m2

C2 )
(3.0 × 10−9 C)

(1.20m)2
= +18.7 N

C

Add these up, and the total E field at the given point is

Ex = −5.75 N
C

+ 11.2 N
C

+ 18.7 N
C

= +24.1 N
C

7. In Fig. 2.13, determine the point (other than infinity) at which the total
electric field is zero. [SF7 15-27]

For all points that we consider there will be a (vector) electric field due to the −2.5µC
charge and one due to the +6.0µC charge; we want to find the point at which these vectors
add to zero.

It would seem that this point should lie on the line joining the two charges, but do we
need to consider points off this line? No, because at points off this axis the two field vectors
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will point toward or away from the individual charges and at points off the axis those vectors
can’t be parallel and so can’t cancel. So we only need to think about points on the axis.

Could this point lie between the two charges? In that region, the field due to the −2.5µC
charge will point toward that charge (i.e. to the left) and that due to the +6.0µC charge
will point away from that charge (i.e. also to the left). Those vectors can’t cancel regardless
of their magnitudes, so the point can’t lie between the two charges.

How about someplace to the right of both charges? In that region, the +6.0µC charge
is always closer than the −2.5µC charge. That being the case, the field from the +6.0µC
charge must always have the larger magnitude (charge is bigger and distance is smaller) so
again the vectors can’t cancel.

The point we want must lie to the left of both charges. In that region, the field due to
the −2.5µC charge points to the right and that due to the +6.0µC charge points to the
left. (Note that the −2.5µC charge is always closer and since it also has a smaller charge,
there could be some place where the fields cancel.) If we consider a point which lies at a
distance d to the left of the −2.5µC charge, then its distance from the +6.0µC charge will
be d + 1.0m, and using Eq. 2.3 the x component of the total field will be

Ex,total = k
(+2.5µC)

d2
− k

(6.0µC)

(d + 1.0m)2
= 0 (2.6)

It is now just a math problem to solve for d. We’re done with the physics .
First off, we can cancel the constant k in Eq. 2.6 as well as the “µC” units. One trick

that will work (unless you’ve got any better ideas!) is to multiply both sides of Eq. 2.6 by
d2(d + 1.0m)2. That gives us:

d2(d + 1.0m)2 (+2.5)

d2
− d2(d + 1.0m)2 (6.0)

(d + 1.0m)2
= 0

Cancel things and get:

(d + 1.0m)2(2.5) − d2(6.0) = 0

which you might recognize as a quadratic equation, so that we can get an answer. Expand
the square:

(2.5)(d2 + (2.0m)d + 1.0m2) − (6.0)d2 = 0

and ignoring the “m” units symbol for now, multiply and get:

2.5d2 + 5.0d + 2.5 − 6.0d2 = −3.5d2 + 5.0d + 2.5 = 0

or, without the leading minus sign,

3.5d2 − 5.0d − 2.5 = 0
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Almost there! Use the quadratic formula to find:

+5.0 ±
√

25.0 + 35

7.0
= 1.8m

Here we’ve considered only the “+” root since the other would give a negative value for d
which we assumed was positive.

So the point we want is 1.8m to the left of the −2.5µC charge.
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Chapter 3

Electric Potential Energy; Electric
Potential

3.1 The Important Stuff

3.1.1 Electric Potential Energy and Electric Potential

The last two chapters have dealt with forces and electric charge. The fundamental equation
was Coulomb’s law, by way of which we came to talk about the electric field as a quantity
of greater utility.

In the first semester of the course, after discussing forces we discovered that energy (both
potential and kinetic) were useful ideas, and we now discuss the role of energy in electricity.

A charge q moving through an electric field E experiences a force and so (in general)
work is done on the charge. An example is shown in Fig. 3.1, where a charge q moves in a

E

E

F= qE F

s

q

+

+

+

+

+

+

-

-

-

-

-

Figure 3.1: A positive charge q moves in a straight line between two large parallel plates, where the E
field has a constant value; the force on the charge is also constant and equal to qE. If q moves a distance s
as shown, the work done on the charge is W = Fs = qEs.

25
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F

F

ra

rb

q

q

a

b

q

Ds

Figure 3.2: Charge q is moved from a to b by two paths. The work done the by electric force on q must
be calculated by adding up F∆s cos θ for small steps ∆s along the paths. Because of a special property of
the electric force the value is the same for both paths.

uniform field E. If it moves a distance s in the direction of the field, the work done on the
charge is W = Fs = qEs.

Generally electric fields are not this simple; they are not uniform and so calculating the
work in each case would be hard (it would require calculus!). But we are assured of a couple
things:

• The work done on charge q is proportional to q.
• If the other charges producing the electric field stay in their places then the work done by
the electric force as q moves from point a to point b does not depend on the path taken from
a to b.

The second point is illustrated in Fig. 3.2. Here we pick two paths from a to b. The work
done by the electric force might be a complicated thing to calculate but we get the same
thing in both cases; the value depends only on the endpoints a and b.

Rather than calculate the work done by the electric forces it is easiest to think in term
of a electric potential energy PEelec which can be evaluated at all points in space. The
relation between the two is

Wa→b = −(PEelec(b) − PEelec(a)) == −∆PEelec (3.1)

Of course, the electric potential energy PEelec is a scalar with units of joules.

Now we deal with the first of the two points: As charge q moves from a to b the work done
(and hence the change in potential energy) is proportional to q. If we were to divide ∆PEelec

by q we would get a number which does not depend on q, just all of the other charges in the
world and points a and b. If we call this quantity ∆V , then

∆V =
∆PEelec

q
(3.2)
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The quantity V is called the electric potential, which should not be confused with
electric potential energy . The two are related, but the electric potential V give the potential

energy per unit charge, just as the electric field E gave the electric force per units charge.
The definition given in Eq. 3.2 only gives the difference in values of V , just as it is only

the differences in the potential energy PEelec that have any real meaning.
V is a scalar and from Eq. 3.2 it must have units of J/C. Because V is such an important

quantity, we give this combination of units a special name, the volt:

1 volt = 1V = 1 J
C

(3.3)

It will often happen that we will discuss the change in potential energy of an elementary
charge (like an electron or a proton) when it moves through a potential difference of 1 volt.
When this happens the change in potantial energy has magnitude

∆PEelec = |q∆V | = (e)(1V) = (1.602 × 10−19 C)(1V) = 1.602 × 10−19 J

This gives us a convenient unit of energy for this process; since the energy here is “one
electron times one volt” we define a unit of energy called the electron volt:

1 electron volt = 1 eV = 1.602 × 10−19 J (3.4)

For example when an electron (charge −e) goes through a potential gain of +5.0V it has a
change in potential energy of −5.0 eV.

3.1.2 Calculating the Electric Potential

In certain simple situations we can calculate the electric potential
If the point P is a distance r from a point charge q, then the potential at P is given by

V = k
q

r
(3.5)

Keep in mind that V is a scalar (a single number; no direction), and even though Eq. 3.5
looks like the formula for the electric field near a point charge (it should; they are related),
we are calculating a it different quantity here. Note, there is only a single power of r in the
denominator.

To get the electric potential for a point P which is in the vicinity of a group of point
charges q1, q2, . . ., just add up the electric potentials due to each charge:

V = k
q1

r1
+ k

q2

r2
+ · · · (3.6)

where r1 is the distance from P to q1, r2 is the distance from P to q2, and so on.
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+Q, A

-Q, A

q

(a) (b)

Figure 3.3: Equipotential surfaces for two simple charge configurations. (a) Around a point charge the
equipotentials are spherical surfaces. (b) Between two parallel charged plates the equiotentials are parallel
planes.

Between two large oppositely-charged parallel plates the electric field is uniform; if the
coordinate axis perpendicular to the plates is z and E points in the positive z direction then
the work done by the electric field as a charge q has a change in position given by ∆z is

W = (qE)∆z =⇒ ∆PEelec = −W = −qE∆z = ∆(−qEz)

This means that we can take the electric potential between the plates as

Vplates = −Ez (3.7)

Here, the z axis points from the positive plate to the negative plate. If we are given the
potential difference of the plates themselves and the distance between the plates (∆z = d)
then we can find the magnitude of E from: E = ∆V/d.

3.1.3 Equipotentials; Relation Between E and V

For any configuration of charges we can draw (or imagine) surfaces on which the potential
V has the same value. Such a surface is called an equipotential. Simple examples are
shown in Fig. 3.3; for a point charge the equipotentials are spherical surfaces surrounding
the charge. For the parallel charged plates (where the potential is proportional to z between
the plates) the equipotentials are parallel planes.

A less trivial example is given in Fig. 3.4, where we see the profiles of the equipotential
surfaces for the electric dipole.

In general the equipotential surfaces are perpendicular to the electric field lines.
The relation between the electric field E and the potential V can be expressed using the

equipotentials and field lines, as illustrated in Fig. 3.5. If we consider a small displacement
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+q -q

Figure 3.4: Equipotential surfaces for the electric dipole.

E

Ds

V1
V2

Es =  -DV/Ds

Figure 3.5: Relation between E and V . If we go from equipotential V1 to equipotential V2 along a field
line (perpendicular to the equipotentials, along a coordinate s) then the component of the E field in this
direction is Es = −∆V/∆s. We are assuming that ∆s is very small.



30 CHAPTER 3. ELECTRIC POTENTIAL ENERGY; ELECTRIC POTENTIAL

∆s along a field line, and the displacement takes you from potential V1 to potential V2, then
the component of the E field in the direction of s is given by

Es = −∆V

∆s
(3.8)

There’s a minus sign here because the electric field always points from higher to lower electric
potential; when ∆V is negative, Es is positive.

When the E field is expressed as in Eq. 3.8 it is clear that the units of the E field can
also be given as V

m
(volts per meter). This is exactly the same as the units we had been

using, N
C

(newtons per coulomb).

3.1.4 Capacitance

We’ve seen one example of a capacitor already (the parallel plates); in general a capacitor
is a pair of conductors on which we intend to place opposite charges ±q. (To be brief we
will say that the charge on a capacitor is “q”.)

When the two plates of the capacitor are charged there will be a potential difference ∆V
between them (with the positively charged plate at the higher potential). Again, to be brief
we will just say that the potential difference of the capacitor is “V ”.

As one might expect, the greater the charge placed on the plates of the capacitor, the
greater the potential difference. In fact, it turns out that they are always proportional and
the constant of proportionality is called the capacitance C of the capacitor:

q = CV (3.9)

From Eq. 3.9 (which gives C = q
V

), the units of capacitance have to be C/V. We define
this combination of units as the farad:

1 farad = 1F = 1 C
V

(3.10)

A farad is actually quite a large amount of capacitance; more commonly one sees capac-
itors with capacitances on the order of mF or µF.

The constant ε0 is often expressed in terms of this unit:

ε0 = 8.85 × 10−12 C2

N·m2 = 8.85 × 10−12 F
m

We can work out the capacitance of two parallel plates (which are separated by a “small”
distance) using this definition and our earlier results. If the plates of the capacitor have
area A and are given a charge q then the charge density on the plates (assumed uniform) is
σ = q

A
. Then the magnitude of the E field between the plates is

E =
σ

ε0
=

q

ε0A
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If the spacing between the plates is d then putting ∆z = d in Eq 3.7 gives the magnitude of
the potential difference, V = ∆V = Ed, or E = V/d. Substituting, this gives

V

d
=

q

ε0A
=⇒ q =

(

ε0A

d

)

V

Comparing this with Eq. 3.9 gives

C =
ε0A

d
(3.11)

3.1.5 Dielectrics

The formula given above for the capacitance of a parallel-plate capacitor assumes that there
is nothing (except for air, which has a small effect) between the plates. If the volume between
the plates is filled with an insulating material (a dielectric), then the plates can still store
charges but the capacitance needs a correction factor from the value given in Eq. 3.11 (which
we now call C0 for clarity). In general the capacitance will be larger than the air-filled value
by a factor of κ:

C = κC0 =
κε0A

d
(3.12)

The (unitless) number κ is characteristic of the substance we put between the plates. Some
examples are:

κTeflon = 2.1 κMica = 5.4 κWater = 80.4

With a dielectric between the plates the electric field is still related to V by E = V/d
(because the electric field is still uniform) but it is related to the charges on the plates by:

E =
σ

κε0
=

q

κε0A
(3.13)

so if we keep the charge on the plates the same (as would happen if the capacitor were
isolated) then the electric field decreases from the value it has without the dielectric in
place.

3.1.6 Capacitors and Energy

In putting charge onto the plates of a capacitor one must do work in transferring charge
from one plate to the other. Thus a capacitor stores energy; if the potential difference of a
capacitor is V , the energy stored in the capacitor is given by

E = 1
2
CV 2 (3.14)
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V = 0 VV = 25000 V

v

q = -e

v = 0

screen

Figure 3.6: Electron in Example 1 moves through a potential difference and gains speed.

If we use Eq. 3.9, we can write this in terms of the charge q on the capacitor,

E =
q2

2C
(3.15)

3.2 Worked Examples

3.2.1 Electric Potential Energy and Electric Potential

1. In a television tube, electrons strike the screen after being accelerated through
a potential difference of 25000V. The speeds of the electrons are quite large, and
for accurate calculations of the speeds, the effects of special relativity must be
taken into account. Ignoring such effects, find the electron speed just before the
electron strikes the screen. [CJ6 19-5]

The problem is diagrammed in Fig. 3.6. Initially the electron is at a potential V = 0 and
its speed is zero. Later it is at the screen where the potential is +25000V and its speed is
v. In moving toward the screen the kinetic energy of the electron increases and its potential
energy decreases such that the total energy change of the electron is zero:

∆PE + ∆KE = 0

The change in potential energy of the electron is

∆PE = q∆V = (−e)∆V
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The change in kinetic energy of the electron is

∆KE = 1
2
mev

2 − 0 = 1
2
mev

2

Put these together and get

(−e)∆V + 1
2
mv2 = 0 =⇒ v2 =

2e∆V

me

Plug in the numbers:

v2 =
2(1.60 × 10−19 C)(25000V)

(9.11 × 10−31 kg)
= 8.8 × 1015 m2

s2

And then:
v = 9.4 × 107 m

s

(This is about one-third the speed of light so the caution about the need for relativity was
appropriate!)

3.2.2 Calculating the Electric Potential

2. Two point charges, 3.40µC and −6.10µC are separated by 1.20m. What is the
electric potential midway between them? [CJ6 19-12]

At the point midway between the charges the distance to each charge is 0.60m. Use
Eq. 3.6 to get the electric potential due to this set of point charges:

V = k
q1

r1
+ k

q2

r2
+ · · ·

= (8.99 × 109 N·m2

C2 )

(

(3.40 × 10−6 C)

(0.60m)
+

(−6.10 × 10−6 C)

(0.60m)

)

= −4.05 × 104 V

The potential at the given point is −4.05 × 104 V.

3. Oppositely charged plates are separated by 5.33mm. A potential difference
of 600V exists between the plates. (a) What is the magnitude of the electric
field between the plates? (b) What is the magnitude of the force on an electron
between the plates? (c) How much work must be done on the electron to move it
to the negative plate if it is initially positioned 2.90mm from the positive plate?
[SF7 16-7]
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+79e

+2e

v
v = 0

A B

r

Figure 3.7: Alpha particle (with charge +2e) is fired at gold nucleus (with charge +79e) in Example 4. At
position A it is very far away from the gold nucleus and has speed v. At position B, at a distance r from
the nucleus, it has come to rest and is turning around.

(a) The electric field is uniform between the plates and we can its magnitude from Eq. 3.7
which gave

E =
∆V

d
=

(600V)

(5.33 × 10−3 m)
= 1.13 × 105 V

m

(b) The force on the electron can be found from F = qE. We have the magnitude of the E
field from (a), so the magnitude of the force on an electron is

F = |qE| = (1.60 × 10−19 C)(1.13 × 105 N
C
) = 1.80 × 10−14 N

(c) To push the electron back to the negative plate we must oppose the force found in part
(b). Since it is 2.90mm from the positive plate, we need to push the electron a distance

s = 5.33mm − 2.90mm = 2.43mm

The distance Thus we push with a force of 1.80 × 10−14 N for a distance of 2.43mm. Then
the work done is

W = Fs = (1.80 × 10−14 N)(2.90 × 10−3 m) = 4.38 × 10−17 J

So the work done is 4.38 × 10−14 J.

4. In Rutherford’s famous scattering experiments that led to the planetary model
of the atom, alpha particles (having charges of +2e and masses of 6.64× 10−27 kg)
were fired toward a gold nucleus with charge +79e. An alpha particle, initially
very far from the gold nucleus, is fired at 2.00× 107 m

s
, as shown in Fig. 3.7. How

close does the alpha particle get to the gold nucleus before turning around?
Assume the gold nucleus remains stationary. [SF7 16-19]
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Because the electric force is a conservative force, the total energy of the alpha particle
is conserved as it flies toward the gold nucleus. The total energy is the same at position A
and position B in Fig. 3.7 and we can use this to figure out the distance at which the alpha
particle momentarily comes to rest.

Consider the energy at position A. The alpha particle has kinetic energy 1
2
mv2. Now, at

all distances from the gold nucleus the electric potential is

V = k
Q

r
= k

(79e)

r

which becomes very small as r becomes very large; we assume position A is so far away from
the nucleus that we can ignore the electric potential of the nucleus and so the total energy
at A is just the kinetic energy:

EA = 1
2
mv2

where v = 2.00 × 107 m
s
.

At position B the speed of the alpha particle is zero, so it has no kinetic energy. But
now we do have to think about the electric potential energy. At a distance r the electric
potential is k(79e)/r and the potential energy of the alpha particle is +2e (its charge) times
this amount, so

PEB = k
(2e)(79e)

r
= k

(158e2)

r
= EB

From energy conservation we can equate these two expressions for the energy. We get:

1
2
mv2 = k

(158e2)

r
=⇒ r =

2k(158)e2

mv2

Plug in the numbers and get:

r =
2(8.99 × 109 N·m2

C2 )(158)(1.60 × 10−19 C)2

(6.64 × 10−27 kg)(2.00 × 107 m
s
)2

= 2.74 × 10−14 m

3.2.3 Capacitance

5. What voltage is required to store 7.2 × 10−5 C of charge on the plates of a
6.0 -µF capacitor? [CJ6 19-36]

Use equation Eq. 3.9, which relates charge, voltage and capacitance:

q = CV =⇒ V =
q

C
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Plug in the numbers:

V =
(7.2 × 10−5 C)

(6.0 × 10−6 F)
= 12.0V

We must put a potential difference of 12.0V across the plates of the capacitor.

6. An air–filled capacitor consists of two parallel plates, each with an area of
7.60 cm2 and separated by a distance of 1.80mm. If a 20.0-V potential difference
is applied to these plates, calculate (a) the electric field between the plates, (b)
the capacitance, and (c) the charge on each plate. [SF7 16-25]

(a) In between the plates the field is uniform so if we have the potential difference of the
plates and their separation, Eq. 3.8 (or Eq. 3.7) gives the magnitude of the electric field in
between the plates:

E =
∆V

∆z
=

V

d
=

(20.0V)

(1.80 × 10−3 m)
= 1.11 × 104 V

m

(b) To get the capacitance of the parallel plates, use Eq. 3.11, (be careful to convert the
units of the area properly...),

C =
ε0A

d
=

(8.85 × 10−12 F
m

)(7.60 × 10−4 m2)

(1.80 × 10−3 m)
= 3.74 × 10−12 F

The answer can also be expressed as

C = 3.74pF

(c) Having the capacitance and potential difference we can get the charge on each plate from
Eq. 3.9,

q = CV = (3.74 × 10−12 F)(20.0V) = 7.47 × 10−11 C

= 74.7 × 10−12 C = 74.7pC

which means that one plate has a charge of +74.7pC and the other has a charge of −74.7pC.

3.2.4 Dielectrics

7. A parallel plate capacitor has a capacitance of 7.0µF when filled with a di-
electric. The area of each plate is 1.5m2 and the separation between the plates
is 1.0 × 10−5 m. What is the dielectric constant of the dielectric? [CJ6 19-35]
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Eq. 3.12 gives the capacitance of a parallel plate capacitor when it is filled with dielectric
of constant κ. Solving for κ gives

κ =
dC

ε0A

Plug in the numbers:

κ =
(1.0 × 10−5 m)(7.0 × 10−6 F)

(8.85 × 10−12 F
m

)(1.5m2)
= 5.3

3.2.5 Capacitors and Energy

8. A parallel-plate capacitor has 2.00 cm2 plates that are separated by 5.00mm
with air between them. If a 12.0-V battery is connected to this capacitor, how
much energy does it store? [SF7 16-43]

Using Eq. 3.11 we find the capacitance of this capacitor (note that 2.00 cm2 converts to
2.00 × 10−4 m2):

C = ε0
A

d
= (8.85 × 10−12 C2

N·m2 )
(2.00 × 10−4 m2)

(5.00 × 10−3 m)
= 3.54 × 10−13 F

Using Eq 3.14 we find the energy stored in this capacitor:

Energy = 1
2
CV 2 = 1

2
(3.54 × 10−13 F)(12.0V)2 = 2.55 × 10−11 J
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Chapter 4

Electric Current and Resistance

4.1 The Important Stuff

4.1.1 Electric Current

The results of the last three chapters (particularly those involving conductors) apply to the
special case that electric charges are not in motion, the electrostatic case. For that case, all
the points of a single conductor were at the same potential and the electric field was zero
within the material of the conductor.

In certain situations we can maintain the motion of charges through a conductor, as when
we connect a battery across the ends of a wire. In that case electric charge (negative charge,
as it turns out) moves through the wire and there will be potential differences between the
points of the conductor.

Even though it is the electrons in the material which move it turns out that it makes no
difference if we think of positive charges moving in the opposite direction, and that is how
we will think of current.

For a long conductor the fact that electric charge doesn’t build up anywhere implies that
the amount of charge per time passing any point is the same. For clarity, we can imagine
a plane cutting through a conductor as shown in Fig. 4.1. We imagine counting the charge
per time which crosses this plane, and the amount of charge per time is the current I ,

I =
∆q

∆t
(4.1)

Electric current (as we will use it) is a scalar and from Eq. 4.1 must have units of C/s. We
define this combination of units to be the ampere,

1 ampere = 1A = 1 C
s

(4.2)

39
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Figure 4.1: Electric current: Charge per time passing through a cross-section of a wire.

Electric current can be related to the number density of electrons in a conductor and the
speed with which they move by:

I = nqvdA (4.3)

where n is the number density of charge carriers (electrons, usually), q is the value of their
charge, vd is the drift velocity, the speed with which the carriers actually move in the wire
(on average) and A is the cross-sectional area of the wire.

4.1.2 Ohm’s Law

For many substances it is found that the current flowing through a wire made of the material
is proportional to the potential difference across its ends: I ∝ V . We write this relation in
the following way:

V

I
= R or V = IR (4.4)

where R is constant which depends on the properties of the wire (its material and its dimen-
sions). R is called the resistance of the wire and relation 4.4 is known as Ohm’s law. It is
really an empirical relation, i.e. one which does not come directly from the laws of physics
but which is obeyed pretty well in the real world and is very useful.

From the relation R = V/I we see that the units of resistance must be V
A
. This combi-

nation of units is called an ohm:

1 ohm = 1Ω = 1 V
A

(4.5)
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4.1.3 Resistance and Resistivity

The resistance of a piece of material depends on the type and shape of the material. If the
piece has length L and cross-sectional area A, the resistance is

R = ρ
L

A
(4.6)

where ρ is a constant (for a given material at a given temperature) known as the resistivity
of the material. Some selected values for ρ are:

ρCopper = 1.72 × 10−8 Ω ·m ρAluminum = 2.82 × 10−8 Ω · m ρCarbon = 3.5 × 10−5 Ω · m

The resistivity of a material usually increases with temperature. It generally follows an
empirical formula given by:

ρ = ρ0[1 + α(T − T0)] (4.7)

where ρ and ρ0 are the resistivities of the material at temperatures T and T0, respectively.
The constant α is the temperature coefficient of resistivity.

4.1.4 Electric Power

As charge moves through the wires of an electric circuit, they lose electric potential energy.
(When charge ∆q moves through a potential difference V , it loses ∆qV of potential energy.)
The rate of energy loss is the power P delivered to the circuit elements,

P =
∆qV

∆t
=

∆q

∆t
V = IV

that is,

P = IV (4.8)

Electric power is measured in joules per second, or watts: 1 J
s

= 1W. (We have already
met this unit when we considered mechanical work done per unit time in first-semester
physics.)

The energy goes into heating the resistor.

Using Ohm’s law, (V = IR, or I = V/R) we can show that the power deliver to a circuit
element of resistance R can also be written as

P = I2R or P =
V 2

R
(4.9)
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Figure 4.2: (a) Battery connected to two resistors and a capacitor. (b) Schematic diagram for this circuit.

R1 R2

V

+ -

Figure 4.3: Circuit with two resistors in series.

4.1.5 Series and Parallel Circuits

We will now consider circuits which are more complicated than a single battery connected
to a single resistor. To make progress we will need to use schematic diagrams as shown
in Fig. 4.2. In these diagrams a battery is represented by two parallel lines; the longer line
represents the positive end of the battery (the one at the higher potential). A resistor is
represented by a zigzag line and a capacitor is represented by two parallel lines.

In any of these circuits, the precise shapes of the wires which connect the elements does
matter; we only need to care about the circuit elements and how they are connected to the
other elements.

The first kind of circuit we consider is where a battery is connected to two or more
resistors which are joined end-to-end. Such a circuit is shown in Fig. 4.3. In this circuit
the same current I flows through R1 and R2 (it has nowhere else to go). From Ohm’s law
the drops in potential across the two resistors are IR1 and IR2. The sum of these potential
drops must equal V , the gain in potential across the leads of the battery. So then:

IR1 + IR2 = V =⇒ V = I(R1 + R2) = IRequiv

where the equivalent resistance of the pair is the sum, R1 + R2.
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R1 R2
V

+
-

Figure 4.4: Circuit with two resistors in parallel.

This result generalizes to three or more resistors in series, so we have found that when
we have a number of resistors in series, then for the purposes of finding the common current
through them we can replace them with the equivalent resistance given by

Rser = R1 + R2 + R3 + · · · (4.10)

A different arrangement of battery and resistors is shown in Fig. 4.4. Here the end of two
resistors are at a comon potential so that the potential drop across the resistors is the same
(here, it is V , the battery volatge) but the current through each resistor is not the same. If
the current through R1 is I1 and the current through R2 is I2 then Ohm’s law gives

V = I1R1 = I2R2

so that

I1 =
V

R1

and I2 =
V

R2

Now if the total current which comes out of the battery is I , then this current splits into the
two branches, so that I = I1 + I2. Combining these results gives

I = I1 + I2 =
V

R1
+

V

R2
= V

(

1

R1
+

1

R2

)

We can write this as

V = I
(

1

R1
+

1

R2

)

−1

Now, this looks like Ohm’s law where the equivalent resistance of the parallel resistors is

Requiv =
(

1

R1
+

1

R2

)

−1

or
1

Requiv
=

1

R1
+

1

R2

So we have an addition rule for resistors in parallel: The reciprocal of the equivalent resistance
is the sum of the reciprocals of the individual resistances. So here it’s the reciprocals which
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add together. This rule hold for any number of resistors in parallel so we give the rule for
the parallel case as:

1

Rpar
=

1

R1
+

1

R2
+

1

R3
+ · · · (4.11)

4.1.6 Kirchhoff’s Rules

When analyzing fairly simple circuits the rules for series and parallel resistors along with
Ohm’s law can give all the currents and potential differences. For more complicated cases—
for example networks where there are two or more batteries and resistors with multiple
connections— we need more general rules to solve for the currents.

This help is provided by Kirchhoff’s Rules. These rules are:

Junction Rule: Consider a place where several wires meet— a junction. The sum of the
currents going into this junction equals the sum of currents coming out of this junction.

Loop Rule Consider any loop in the circuit. The sum of potential drops equals the sum of
potential rises, or more simply with signs properly given to all potential differences, the sum
of potential differences is zero.

To apply Kirchhoff’s Rules to a circuit, assign a current (with magnitude and direction)
to each branch in the circuit. Then after choosing a particular loop and a direction in which
to go around that loop, use the potential differences given by:

• If you go from the − terminal to the + terminal of a battery of voltage V , the potential
difference is +V .

• If you go from the + terminal to the − terminal of a battery of voltage V , the potential
difference is −V .

• If you go across a resistor in the direction of the current I , the potential change is −IR
(that is, this is a voltage drop).

• If you go across a resistor in the direction opposite that of the current I , the potential
change is +IR (that is, this is a potential gain).

Adding up the potential differences then gives zero for any loop.

4.2 Worked Examples

4.2.1 Electric Current

1. A certain conductor has 7.50 × 1028 free electrons per cubic meter, a cross-
sectional area of 4.00 × 10−6 m2, and carries a current of 2.50A. Find the drift
speed of the electrons in the conductor. [SF7 17-2]
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Use Eq. 4.3 and solve for vd:

I = nqvdA =⇒ vd =
I

nqA

Plug in numbers:

vd =
2.50C/s

(7.50 × 1028 m−3)(1.60 × 10−19 C)(4.00 × 10−6 m2)
= 5.2 × 10−5 m

s

(While this speed may seem implausibly slow, in fact the average drifting motion of the
electrons in a wire is slow.)

2. In a particular television picture tube, the measured beam current is 60.0µA.
How many electrons strike the screen every second? [SF7 17-4]

The given current (in amperes, or coulombs per second) gives the charge per unit time.
We can use the charge of an electron (1.60 × 10−19 C, in absolute value) to convert this to
electrons per unit time:

60.0µA = (60.0 × 10−6 C
s
)

(

1 electron

(1.60 × 10−19 C)

)

= 3.75 × 1014 electrons
s

So 3.75 × 1014 electrons hit the screen every second.

4.2.2 Ohm’s Law

3. The filament of a light bulb has a resistance of 580Ω. A voltage of 120V is
connected across the filament. How much current is in the filament? [CJ6 20-3]

Ohm’s law relates V , I and R; from it, we have I = V/R. Plugging in the numbers,

I =
V

R
=

(120V)

(580Ω)
= 0.21A

4.2.3 Resistance and Resistivity

4. A cylindrical copper cable carries a current of 1200A. There is a potential
difference of 1.6 × 10−2 V between two points on the cable that are 0.24m apart.
What is the radius of the cable? [CJ7 20-11]
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r

DV= 1.6 x 10-2 V

0.24 m

Figure 4.5: Illustration of Example 4

The problem is diagrammed in Fig. 4.5. We have the current in the cable and the
potential difference for two different points, so from Ohm’s law the resistance of the part of
the cable between those two points is

R =
V

I
=

(1.6 × 10−2 V)

(1200A)
= 1.33 × 10−5 Ω

Then from Eq. 4.6, knowing R, L and the resistivity of the material (i.e. copper) we can
get the cross-sectional area:

R = ρ
L

A
=⇒ A =

ρL

R

Plug in the numbers:

A =
(1.72 × 10−8 Ω · m)(0.24m)

(1.33 × 10−5 Ω)
= 3.10 × 10−4 m2

The cable has a circular cross-section so that A = πr2. Solve for r:

r2 =
A

π
= 9.87 × 10−5 m2 =⇒ r = 9.93 × 10−3 m = 9.93mm

5. Calculate the diameter of a 2.0-cm length of tungsten filament in a small
lightbulb if its resistance is 0.050Ω. Use ρTung = 5.6 × 10−8 Ω · m. [SF7 17-13]

We have the resistance of the sample, its length and its resistivity. Use Eq. 4.6 to get the
cross-sectional area:

R = ρ
L

A
=⇒ =⇒ A =

ρL

R
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Use the given values:

A =
5.6 × 10−8 Ω · m)(2.0 × 10−2 m)

(0.050Ω)
= 2.2 × 10−8 m2

Then since A = πr2 the radius is

r2 =
A

π
=

(2.2 × 10−8 m2)

π
= 7.1 × 10−9 m2 =⇒ r = 8.4 × 10−5 m

and the diameter of the wire is

d = 2r = 1.7 × 10−4 m = 0.17mm

4.2.4 Electric Power

6. The heating element in an iron has a resistance of 24Ω. The iron is plugged
into a 120-V outlet. What is the power delivered to the iron? [CJ7 20-21]

[We need to bend the rules a bit here; actually a wall outlet delivers an alternating

voltage, not the constant voltage that we use through this chapter. It turns out that if we
treat the given voltage value as constant we do get the right answer.]

Here we are given the potential drop across the resistor (i.e. the iron) and its resistance
so that we can one of the equations from 4.9 to get

P =
V 2

R
=

(120V)2

(24Ω)
= 600W

4.2.5 Resistors in Series and in Parallel

7. A 36.0-Ω resistor and a 18.0-Ω resistor are connected in series across a 15.0-V
battery. What is the voltage across (a) the 36.0-Ω resistor and (b) the 18.0-Ω
resistor? [CJ7 20-41]

The circuit is shown in Fig. 4.6. As the resistors are in series, the equivalent resisance is
the sum of the two:

Requiv = R1 + R2 = 36.0Ω + 18.0Ω = 54.0Ω}

and with this value, Ohm’s law gives the current I :

V = IR =⇒ I =
V

R
=

15.0V

54.0Ω
= 0.278A
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36.0 W

15.0 V

+ -

18.0 W

I

Figure 4.6: Circuit for Example 7.

This is the current which goes through each resistor.
Using Ohm’s law we can find the voltage (potential difference) across each resistor:

V36.0 = IR1 = (0.278A)(36.0Ω) = 10.0V

V18.0 = IR2 = (0.278A)(18.0Ω) = 5.00V

The sum of the two potential differences is 15.0V, as it must be since that is the same as
potential difference across the terminals of the battery.

8. What resistance must be placed in parallel with a 155-Ω resistor to make the
equivalent resistance 115Ω? [CJ7 20-48]

Eq. 4.11 gives the equivalent resistance for two resistors in parallel. If one of them is
155Ω and the equivalent resistance is 115Ω, then

1

Rpar
=

1

R1
+

1

R2
+

1

R3
+ · · · =⇒ 1

115Ω
=

1

155Ω
+

1

R

Solve for R:

1

R
=

1

115Ω
− 1

155Ω
= 2.24 × 10−3 Ω−1 =⇒ R = 446Ω

9. Find the equivalent resistance between points a and b in Fig. 4.7. [SF7 18-45]

First we note that the 5.1Ω and 3.5Ω resistors are in series The picture shows a bend
where they join, but that’s irrelevant!) They are equivalent to a single resistor of value

Requiv = R1 + R2 = 5.1Ω + 3.5Ω = 8.6Ω

so we can draw a (new) equvalent circuit as shown in Fig. 4.8(a). The new 8.6Ω resistor is
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a

b

2.4 W

3.6 W

5.1 W

1.8 W
3.5 W

Figure 4.7: Resistor combination for Example 9.

a

b

2.4 W

3.6 W
1.8 W 8.6 W

a

b

2.4 W

3.6 W

1.5 W

(a) (b)

Figure 4.8: Steps in solving Example 9.

in parallel with the 1.8Ω resistor, so their resistances combine as given in Eq. 4.11,

1

Requiv
=

1

R1
+

1

R2
=

1

1.8Ω
+

1

8.6Ω
= 0.672Ω−1 =⇒ Requiv = 1.5Ω

Then replace the parallel resistors in Fig. 4.8(a) with a single 1.5Ω resistor and we have
the circuit shown in Fig. 4.8(b). Here there are three resistors in series so the equivalent
resistance is the sum of their values:

Requiv = 2.4Ω + 1.5Ω + 3.6Ω = 7.5Ω

So the equivalent resistance between points a and b is 7.5Ω.

10. (a) Find the equivalent resistance between points a and b in Fig. 4.9. (b)
Calculate the current in each resistor if a potential difference of 34.0V is applied
between points a and b [SF7 18-5]

(a) First, find the equivalent resistance of the pair of parallel resistors in the center. (We
have to start with this; we have no other simple series or parallel combination to start with.)
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7.00 W

10.0 W

4.00 W 9.00 W

a b

Figure 4.9: Resistor combination for Example 10.

4.12 W4.00 W 9.00 W

a b

17.1 W

a b

I

Figure 4.10: First steps in solving Example 10.

Using Eq.‘4.11 we get:

1

Rrmequiv

=
1

7.00Ω
+

1

10.0Ω
= 0.243Ω−1 =⇒ Requiv = 4.12Ω

so we can replace this pair by a single 4.12Ω resistor; we now have the equivalent circuit
shown in Fig. 4.10.

Now the combination is a simple series circuit and the equivalent resistance is just the
sum of the individual resistances:

Requiv = 4.00Ω + 4.12Ω + 9.00Ω = 17.1Ω

(b) With the answer to (a) we can get the total current I flowing into the network at a
and out at b:

I =
V

Requiv
=

(34.0V)

(17.1Ω)
= 1.99A

This must be the same as the current in the 4.00Ω and 9.00Ω resistors.
Using Ohm’s law we can find the potential drops across the 4.00Ω and 9.00Ω resistors.

They are

V4.00 = IR = (1.99A)(4.00Ω) = 7.96V and V9.00 = IR = (1.99A)(9.00Ω) = 17.9V
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respectively. But the total drop in potential from a to b is 34.0V so the drop across the
resistor pair must be

34.0V − 7.96V − 17.9V = 8.1V

and this is the drop in potential of each resistor in the pair. Using Ohm’s law we get the
current in each of the resistors:

I7.00 =
V

R
=

(8.1V)

(7.00Ω)
= 1.2A

I10.0 =
V

R
=

(8.1V)

(10.0Ω)
= 0.81A

Then the currents are

I4.00 = 1.99A I7.00 = 1.2A I10.0 = 0.81A I9.00 = 1.99A


